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ABSTRACT 

Over 190,000 Americans die every year from lung cancer, making it the number 

one cause of death from cancer in the United States of America.  Lung cancer has 

maintained the same low five year survival rate, of 13-15%, over the last thirty years.  

There is therefore desperate need for improvement in diagnostic and therapeutic 

techniques for lung cancer.  Multidetector computed tomography (MDCT) is being 

increasingly used for lung cancer detection and characterization. While national lung 

cancer screening trials have shown MDCT to be effective in detecting even very small 

lung nodules, the characterization achievable through this modality is poor. The majority 

of non-small cell lung cancer nodules are histologically heterogeneous and consist of 

malignant tumor cells, necrosis, stromal tissue, and inflammation; however, the extent of 

this heterogeneity is unknown.  Geometric and tissue density heterogeneity are 

underutilized in MDCT representations of lung tumors for distinguishing between 

malignant and benign nodules because there has been no thorough investigation into the 

correlation between radiographic heterogeneity and corresponding histological content in 

3D. To understand and to make more effective this lung cancer characterization by 

MDCT, two vital steps must be taken.  Firstly, an understanding of the 3D structure and 

content of tissue types that constitute a lung nodule must be established.  Secondly, this 

knowledge must then be used to assess how nodule tissue content corresponds to the 

heterogeneity apparent in MDCT data, impacting diagnosis, planning biopsy procedures 

and nodule change analysis.   

In this study we have developed a process model for establishing a direct 

correlation between histopathology and non-destructive radiological imaging.  We 
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provide the 3D structural and pathological detail of lung cancer nodules and surrounding 

tissues using a purpose built Large Image Microscope Array (LIMA).  This information 

served as the basis for registration of MDCT images of the human nodule before and 

after resection, computed micro-tomography (micro-CT) detail and histopathology.   
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Nothing in life is to be feared, it is only to be understood.  Now is the time 
to understand more, so that we may fear less. 
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CHAPTER 1  

INTRODUCTION 

The mortality from lung cancer is higher in both men and women than from any 

other form of cancer, despite the fact that the most commonly diagnosed cancers are 

prostate cancer in men and breast cancer in women.  Multidetector computed tomography 

(MDCT) is widely used for the detection and evaluation of lung nodules and there are 

major efforts underway to assess this modality in screening and clinical approaches, 

including the National Lung Screening Trial, the Lung Image Database Consortium, and 

the Early Lung Cancer Action Program.  However, most detected lung nodules are not 

malignant.  The lung cancer paradox remains unsolved – early detection of suspect 

nodules is achievable, but early therapy is not.  Currently, the recommended standard of 

care is radiological surveillance for evidence of ‘growth’.  Some computer aided 

detection and diagnosis algorithms based on MDCT data have been developed and 

achieved promising results.  However, a considerable barrier to assisting with diagnosis is 

that the ‘ground truth’ of lung nodule structure is not known, significantly inhibiting the 

development of more sophisticated algorithms with further informative outputs. 

Non-small cell lung cancer nodules are considered by most clinicians to be 

histologically homogeneous (consisting only of cancer).  However, heterogeneity exists, 

a factor not appreciated by many investigators and one which is also poorly studied.  The 

nodules typically consist of malignant tumor cells, necrotic tumor, fibroblastic stromal 

tissue, and inflammation with possibly only a small proportion of the nodule containing 

viable cancer cells.  However, the precise registration between radiographic heterogeneity 

and corresponding histological content has been non-existent and is not available for the 
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two-dimensional (2D) or three-dimensional (3D) image space.  It is vital, for the 

continued maturation of lung cancer diagnosis technologies and treatment outcome 

measures, that a 3D understanding of the structural content of lung nodules is obtained.  

This information is not just self evident for MDCT approaches but also for other imaging 

techniques such as PET, MRI, and optical scanning. 

The aim of this investigation is to establish a process for examining the 3D 

structure of a human lung cancer nodule within a multimodal environment, by linking the 

ground truth from 3D histopathology to in vivo MDCT.  Through the creation of a dataset 

which contains registered radiological density, structural, color and cellular information, 

correlations can be made between the representations of the tissue types in the different 

modalities.   

The first hypothesis to be examined in this study is that lung nodules contain both 

cancerous and non-cancerous regions with a three dimensional complex architecture 

which is not evident through traditional histological processing.  The second hypothesis 

is that the histopathologically determined tissue types within a lung nodule is related to 

the nodule’s representation in computed tomography imaging, with a correlation between 

subtle density variations and cancer versus non-cancerous tissue types. 

The specific aims of this research proposal that have been developed to address 

the hypotheses presented above are: 

Specific Aim 1: Establish a reliable tissue acquisition, processing and 

multimodal imaging method.  This aim involves the establishment of an interdisciplinary 

study team, gaining approval for the study from the University of Iowa Institutional 

Review Board (IRB) and identifying and consenting patients for study enrollment.  
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Tissue processing methods also need to be developed for tissue fixation and specimen 

stabilization between imaging modalities.  The resulting datasets are to include in vivo 

MDCT, MDCT scans of the resected lobe both fresh and fixed, and the resected nodule 

imaged via MDCT, computed micro-tomography (micro-CT), a novel large-scale image 

microscope array (LIMA) system with associated histology.  Through these datasets 

density, color and cellular information relating to the cancer nodule will be gained.    

Specific Aim 2: The development of an automated classification approach for 

histopathological data to improve speed and repeatability of nodule tissue type 

identification.  Manual tracing of histopathology data in order to generate a ground truth 

mapping of nodule tissue types is time consuming and subjective.  Hence, an approach 

for the automated classification of the histological data will be established.  

Specific Aim 3: The construction of a registration processing pipeline to register 

the multimodal image datasets to a common coordinate system. The novel LIMA system 

has been developed to serve as the ground truth reference for the registration of the 

datasets, establishing structural correspondence between the micro-CT and histology 

datasets.  Rigid and elastic registration techniques will be employed to meet the 

registration goals.   

Specific Aim 4: The analysis of nodule histopathological tissue type properties 

including the correlation to MDCT graylevel heterogeneity.  The histopathological tissue 

type maps will be used to statistically evaluate if the MDCT graylevel heterogeneity is 

related to the cellular composition in lung nodules.   
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CHAPTER 2  

BACKGROUND 

2.1 The Respiratory System 

The lungs are the major organ of the respiratory system within which gas transfer 

occurs.  Oxygen is delivered to the vascular system such that it can be transported to the 

cells and carbon dioxide, a by-product of cell metabolism, is removed.  At total lung 

capacity the average human lung volume is 4-5 liters, of this volume approximately 10 

percent is tissue, 10 percent is blood and 80 percent is air [1].  The lungs are divided into 

sections, or lobes.  The right human lung has three lobes, right upper lobe (RUL), right 

middle lobe (RML) and right lower lobe (RLL). The smaller left lung has two lobes, left 

upper lobe (LUL) and left lower lobe (LLL).  The airways consist of a conducting 

portion, which transports gases in and out of the lung, and the respiratory region in which 

gas exchange occurs.  The conducting zone incorporates the trachea, the bronchi, the 

bronchioles and the terminal bronchioles.  The respiratory zone contains the acini, which 

includes the respiratory bronchioles, the alveolar ducts and the alveoli, as depicted in 

Figure 2-1.  There are approximately 480 million alveoli in an adult human lung, which 

are arranged in clusters to form alveolar sacs [2, 3].   

The tissue content of the lung includes the walls of the circulatory vessels, 

conducting airways and the acini.  The characteristics and cellular composition of these 

lung components varies widely.  The large conducting airways are thick, multi-layer 

walls containing a mucosa, smooth muscle and cartilage.  As the airways decrease in size, 

less cartilage is present.  The terminal acini units consist of the respiratory bronchioles 

and alveoli, as shown in Figure 2-2.  The respiratory bronchiole walls still contain 
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smooth muscle and cuboidal epithelium, but unlike the conducting bronchioles no 

cartilage is present.  The alveolar walls are composed of an endothelium lining of the 

capillaries, an epithelium lining the airspaces and an interstitial layer containing 

connective tissue fibers.  The epithelium of the alveoli is made up of type I pneumocytes 

and type II pneumocytes (secretory cells). The type I pneumocytes provide a large 

surface area for gas exchange while the alveolar type II pneumocytes are responsible for 

the synthesis, storage and secretion of phosopholipid rich surfactant. 

 

2.2 Lung Cancer  

Cancer is a disease in which cells acquire genetic alterations and divide without 

control. Cell division of normal lung tissue is necessary to retain the structure and 

functionality of the organ.  Normal cells undergo controlled transitions between resting 

and dividing states.  Exposure to cigarette smoke, excess radiation and other 

environmental carcinogens along with genetic factors can cause malignant transformation 

(carcinogensis) of normal cells.  Malignant or cancerous cells grow and divide 

independent of the needs and limitations of the body, avoiding the resting state typical of 

normal cells.  These cancerous cells have the ability to travel via the blood stream to 

other parts of the body where they continue to grow as metastases. 

2.2.1 Radiological Classification 

A solitary pulmonary nodule is defined as a discrete area of pulmonary opacity 

appearing on chest x-ray or MDCT [4].  Opaque lesions less than three centimeters are 

defined as nodules while a larger lesion is referred to as a mass [4, 5].  Solitary 

pulmonary nodules may be cancerous or non-cancerous (usually a granuloma). 
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With increasing biopsies being performed due to the early detection of lung 

cancer through MDCT screening, the MDCT appearances have been described with 

nodule classifications of solid, non-solid (also sometimes referred to as pure ground glass 

opacities – GGO) and part solid (sometimes referred to as GGO with a solid central 

component) being associated somewhat with histological subtypes [6-9].   

2.2.2 Cellular Classification 

There are two main histological groups of lung cancer; small cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC).  Small cell lung cancer is an 

aggressive cancer that accounts for around 15% of all lung cancers.  SCLC’s are derived 

from a common neuroendocrine precursor cell within the airways and is often fast 

growing and metastasize easily.  Approximately 85% of all lung cancers are NSCLC, of 

which there are three sub-types. These subtypes are grouped together under NSCLC due 

to their similarity in treatment and prognosis.  NSCLC’s are derived from a common 

precursor epithelial cell that may be poorly differentiated or differentiated into; squamous 

cell carcinoma, large cell carcinoma or adenocarcinoma,.  Squamous cell carcinomas 

typically arise in the bronchial epithelium and are typically centrally located and 

comprise about 30% of all lung cancers.  Large cell carcinomas account for about 10% of 

all lung cancers and show no evidence of squamous or glandular maturation and typically 

present in the mid to peripheral regions of the lung.  Adenocarcinomas are the most 

common type of NSCLC comprising of approximately 40% of all lung cancers and are 

the primary focus for this lung nodule study.  Adenocarcinomas arise from the glandular 

cells located in the epithelium lining of the bronchi and are typically peripherally located, 

often near the pleural surface.  Adenocarcinomas were sub typed by Noguchi into 
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pathological sub-types A-F [10].  These sub-types, A to F, are associated with 

progressively poorer prognoses in terms of long term survival: 

A. Localized bronchioalveolar carcinoma (LBAC) 

B. LBAC with foci of collapsed alveolar structures 

C. LBAC with foci of active fibroblastic proliferation  

D. Poorly differentiated adenocarcinoma 

E. Tubular adenocarcinoma 

F. Papillary adenocarcinoma with compressive and destructive growth 

The World Health Organization (WHO) updated the list of pathological sub-types 

of adenocarcinoma in 2004 [11] as:  

1. Adenocarcinoma with mixed subtypes  

2. Acinar adenocarcinoma 

3. Papillary adenocarcinoma 

4. Bronchioalveolar carcinoma (BAC) – nonmucinous, mucinous or intermediate  

5. Solid adenocarcinoma with mucin production 

The difficulty with attempts to categorize the pathological sub-types of 

adenocarcinoma is that most lung adenocarcinomas are histopathplogically 

heterogeneous and contain multiple sub-types. As a further complication adenocarcinoma 

nodules sometimes present containing squamous cell or even NSCLC components. In 

addition, categorization is based on pathologist’s classification of nodule content from 

histopathology data, which examines only small sub samples of tissue.   
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2.2.3 Lung Cancer Staging 

Lung cancer staging is a method by which the extent of disease is classified. This 

process is important in identifying appropriate treatment approaches and determining 

prognoses.  All available factors, including clinical factors (physical exam, imaging and 

laboratory findings) and pathological finding (from tissue specimens obtained via 

bronchoscopy, mediastinoscopy or surgery) are used to determine stage.  

The methods for staging differ based on cellular classification.  For non-small cell 

lung cancers (NSCLC) the American Joint Committee on Cancer has designated staging 

by tumor, node and metastases (TNM) classification.  This staging system takes into 

account the extent of the tumor (T), the level of regional lymph node involvement (N) 

and the presence of metastases (M) [12]:  

• Primary tumor (T)  

o TX: Positive malignant cytology finding with no observable lesion  

o Tis: Carcinoma in situ 

o T1: Diameter of 3 cm or smaller, is surrounded by lung or visceral pleura, and 

is without invasion more proximal than the lobar bronchus  

o T2: Diameter greater than 3 cm and/or has extension to the visceral pleura, 

atelectasis, obstructive pneumonitis that extends to the hilar region but does 

not involve the whole lung or tumor of a main bronchus more than 2 cm distal 

from the carina  

o T3: A tumor of any size that directly invades any of the following: chest wall 

(including superior sulcus tumors), diaphragm, mediastinal pleura, parietal 

pericardium; or, associated atelectasis or obstructive pneumonitis of the entire 
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lung or, tumor in the main bronchus less than 2 cm distal to the carina but 

without involvement of the carina 

o T4: A tumor of any size that invades any of the following: mediastinum, heart, 

great vessels, trachea, esophagus, vertebral body, carina; or, separate tumor 

nodules in the same lobe; or, tumor with a malignant pleural effusion. 

• Regional lymph nodes (N)  

o NX: Regional lymph nodes cannot be assessed  

o N0: No regional lymph node metastasis  

o N1: Metastasis to ipsilateral peribronchial and/or ipsilateral hilar lymph nodes, 

and intrapulmonary nodes including involvement by direct extension of the 

primary tumor  

o N2: Metastasis to ipsilateral mediastinal and/or subcarinal lymph node(s) 

o N3: Metastasis to contralateral mediastinal, contralateral hilar, ipsilateral or 

contralateral scalene, or supraclavicular lymph node(s)  

• Metastasis (M)  

o MX: Distant metastasis cannot be assessed  

o M0: No distant metastasis  

o M1: Distant metastasis present.   

Using the TNM classification to describe the level of tumor invasion, a staging 

system [13] and these stages can be linked to estimated survival rates [14]; 

• Stage 0: TisN0M0 

• Stage IA: T1N0M0, 5 year survival rate of 60-80% 

• Stage IB: T2N0M0, 5 year survival rate of 50-60% 
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• Stage IIA: T1N1M0, 5 year survival rate of 40-50% 

• Stage IIB: T2N1M0 or T3N0M0, 5 year survival rate of 25-40% 

• Stage IIIA: T3N1M0 or T(1-3)N2M0, 5 year survival rate of 10-35% 

• Stage IIIB: T4N(0-3)M0 or T(1-4)N3M0, 5 year survival rate of 5% 

• Stage IV: T(1-4)N(0-3)M1, 5 year survival rate less than 5% 

Due to the aggressive nature of small cell lung cancers (SCLC), the majority of 

diagnosed patients also have metastases and hence a simple two stage classification 

(limited versus extensive) is typically favored over the detailed TNM staging used for 

NSCLC.   

Limited stage SCLC is assigned for small tumors which are confined to the chest 

(including mediastinum and supraclavicular node) with no pleural effusion [15]. Limited 

SCLC stage is associated with a 2 year survival rate of 20% [16].  

Extensive stage SCLC is assigned for an occurrence of distant metastases and/or 

for any tumor too extensive to be incorporated into the limited stage. The prognosis for 

extensive stage SCLC is a 2 year survival rate of 5% [16]. 

 

2.3 Radiological Lung Imaging and Evaluation 

2.3.1 In Vivo Lung Imaging Modalities 

Both x-ray and nuclear imaging are commonly used to acquire in vivo lung image 

data.  These modalities provide fast and relatively non-invasive methods for the detection 

of lung nodules.  

Positron emission tomography (PET) is a form of nuclear imaging which detects 

biochemical changes in body tissue. This non-invasive imaging method involves the 
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administering of radionuclides, which are taken up by healthy tissue at different rates to 

cancerous tissue.  The radionuclides emit positrons which interact with electrons to 

generate two opposing photons, a process called annihilation.  These photon pairs are 

detected by the tomography systems to create an image.   PET imaging is often used 

clinically to scan the whole body and evaluate for metastatic disease or recurrences.  PET 

scanning is increasingly utilized clinically to inform whether a lung nodule is 

metabolically active (for glucose metabolism) which can be used to distinguish between 

malignant (cancerous) and benign (non-cancerous) cases.  PET studies have achieved an 

overall sensitivity of 96%, specificity of 79% and accuracy of 91% in distinguishing 

benign and malignant nodules between 1 and 3cm in diameter [17-19] however, the 

resolution of the PET scanner means that only nodules greater than 1cm should be 

scanned in this manner.  The limitations of PET systems include poor spatial resolution, a 

lack of structural detail, and surprisingly, no one knows whether the PET scan positivity 

relates primarily to the inflammatory component, or to the malignant one [19].  This is an 

area that could benefit in the future from the methodologies developed in this study. 

Techniques such as X-ray and MDCT, involve the detection of x-rays transmitted 

through tissue. Areas of high density, such as bone, limit x-ray transmission while low 

density tissues, such as lung parenchyma, permit x-rays to pass through.  The resulting 

image data reveals the structural composition of the subject based on densities of the 

different tissues.  These techniques provide information regarding nodule size, margin 

characteristics, calcification and cavitation. Through multiple studies conducted over 

time, MDCT can be used to calculate nodule growth rate. 
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2.4 Computed Tomography as a Screening Method 

for Lung Cancer 

The successes in screening for cancers such as cancer of the cervix, breast and the 

prostate, along with the widespread introduction of MDCT scanning into large and small 

medical centers, has lead to the re-discussion of lung cancer screening.  A number of 

projects investigating the feasibility and best methodology of lung cancer screening are 

being conducted both in the United States of America and in Europe.  The Early Lung 

Cancer Action Project (ELCAP) began in 1992 to assess the usefulness of annual MDCT 

screening for lung cancer.  In 2002 the National Lung Screening Trial (NLST) was 

launched to investigate if lung cancer screening by either x-ray or MDCT actually saves 

lives [20].  A similar study was initiated in the Netherlands in 2003; Nederlands- Leuvens 

Lonkanker Screenings ONdersoek (NELSON) [21].  These lung cancer screening studies 

have shown MDCT can detect early stage lung cancer [22, 23].  While the complete 

mortality data for these studies is not yet available, an evaluation in 2004 by the U.S. 

Preventive Services Task Force of all available lung cancer screening data found they 

‘could not determine the balance between the benefits and harms of screening for lung 

cancer’ [24].  One of the primary concerns with lung cancer screening using MDCT is 

what to do with an identified new nodule and in many cases the recommendation is to 

watch the nodule for signs of growth over 3 to 24 months.  This time period is required, 

as a large number of early detected nodules (97%) are false positives (non-cancerous) and 

will not require treatment.  Tracking growth is one way of separating non-cancerous 

nodules, which are unlikely to change over this time period, from cancerous ones.  

Unfortunately, it is obvious that early detection (finding a suspect nodule) does not 
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translate into immediate therapy (resection) – the lung cancer paradox.  Thus, it is 

important to develop the most effective possible ways of staging these early detected 

nodules as well as reliable methods for tracking nodule growth. 

2.4.1 Current Computer Aided Detection and Diagnosis 

Methodologies 

Computer aided detection (CAD) algorithms incorporate image analysis and 

pattern recognition techniques in order to identify and describe areas of interest in an 

image dataset.  In many cases, the area of interest is a specific pathology such as a lung 

nodule in a chest MDCT scan.  CAD systems are becoming increasingly important in the 

clinical setting, serving as a second reader in image interpretation, effectively improving 

detection accuracy and consistency [25, 26].  In some cases CAD systems also 

incorporate a diagnosis element which aims to classify an identified structure as normal 

or abnormal, or in some cases will stage pathology in degrees of severity.  For example, a 

lung nodule may be classified as malignant or benign [27] while emphysema may be 

staged from none to extensive [28-30].  In order to develop a CAD system a complete 

dataset is required containing numerous cases for which the final diagnoses are known, 

this is known as a ‘training dataset’.  From the training set a group of features are 

established to describe each of the diagnoses, or ‘classes’.  The training dataset is used to 

guide the development of the CAD algorithm, by comparing the features of an unknown 

case to the features of the training set, and seeing which class it most closely matches.  

Therefore, if the final diagnosis in the training set has only two classes – malignant and 

benign – then they are the two possible outputs when the CAD algorithm is applied to a 
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new case.  What is needed for the improvement of current CAD technology are training 

sets with more specific classes including; cancer, necrosis, inflammation and fibrosis. 

2.4.2 High Resolution Imaging 

During the last several years, higher resolution radiological techniques have came 

to market to image small anatomical structures and animal models, including micro-CT 

[31-33]. These systems have a restricted field of view and hence can image only small 

animal models in vivo. For human studies using micro-CT systems, tissue samples less 

than 5cm in diameter are examined ex vivo.   

Micro-CT imaging has been employed in osteoporosis research, analysis and 

quantification of bone growth and bone repair models, dentistry research and the analysis 

of cardiac vascularization in mice and rats [34, 35] to mention only a few topics.  

Recently micro-CT is being increasingly employed to investigate pulmonary structure 

and function in normal and diseased mouse models [36-39].  Chang et al. recently used a 

microPET/micro-CT system to measure the growth and response of lung carcinoma to a 

variety of treatments in mice [40]. 

Electromagnetic radiation generated in a synchrotron system can be used to 

generate x-ray beams of specific energy, and hence much higher resolution tomography 

image dataset than achievable on stand alone MDCT or micro-CT systems. At the 

Advanced Photon Source (Chicago, IL, USA) a synchrotron micro-CT system has been 

developed, capable of acquiring datasets at 100 nm resolution [41]. At the Photon Factory 

(Tsukuba, Japan) contrast synchrotron CT has been used to examine human colon and 

liver carcinomas in great detail [42].  
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In summary, MDCT, micro-CT and synchrotron CT systems all function under 

the same principle of the detection of x-rays transmitted through the tissue. However, a 

compromise is made between imaging field of view and resolution.  MDCT, micro-CT 

and synchrotron CT have respectively lower fields of view and higher resolutions. 

 

2.5 Histopathology 

2.5.1 Traditional Pathology Techniques 

Biopsy pathology provides a means for a more detailed investigation of lung 

nodule structure and cellular composition.  Typically, pulmonary pathology involves the 

collection of a small biopsy sample of tissue, which is then fixed, embedded, sectioned, 

stained, mounted on a slide and examined via microscopy.   

Histological staining is used to provide contrast between the structures being 

examined.  The most widely used histopathological staining technique used for medical 

diagnosis is hematoxylin and eosin (H&E).  The H&E stain combines the basic stain, 

hematoxylin which binds to structures in the nuclei and an acidic dye, eosin which binds 

to the proteins in the intracellular or extracellular spaces.  This staining results in nuclei 

stained blue, cytoplasm pink and red blood cells intense red.  H&E is the most common 

staining approach used in clinical pathology for the diagnosis of lung cancer, however 

immunohistochemistry is also being increasingly employed in the clinical setting to aid 

with diagnosis [43] 

2.5.2 Immunohistochemistry 

Immunohistochemistry is a process used to identify proteins in a sample by using 

tagged antibodies which bind specifically to antigens in the tissue.  There are two main 
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approaches to visualizing the antibody-antigen interaction, immunoperoxidase staining 

and immunofluorescence [44].  Immunoperoxidase staining involves an antibody 

conjugated to an enzyme which catalyses a color producing reaction. 

Immunofluorescence uses an antibody tagged to a fluorophore which emits fluorescence 

when stimulated with the appropriate wavelength of light [44].  

The immunohistochemical tagging of an antigen can be accomplished using either 

a direct or indirect method.  The direct method is a single step process in which the 

labeled antibody binds directly to the tissue antigen.  The indirect method involves two 

stages; an unlabeled primary antibody tags the tissue antigen and then a second, labeled 

antibody tags the primary antibody.  While the direct method is simpler, the indirect 

method is most commonly used as it is more sensitive.  A higher sensitivity can be 

achieved with the indirect method, through signal amplification where the labeled 

secondary antibodies bind to several different sites on the primary antibody. 

Immunohistochemistry was first utilized as a diagnostic application to classify 

renal disease in the 1940’s [45].  Since then immunohistochemistry has been used in the 

clinical environment for the diagnosis of immunodeficiency disorders, renal diseases and 

skin diseases [45].  Immunohistochemistry also has a role in surgical pathology for the 

diagnosis of tumors, particularly those which are poorly differentiated.  These techniques 

are also utilized to determine the primary site of metastatic epithelial tumors.  

A number of studies have been conducted examining the use of 

immunohistochemical staining for the identification and staging of lung cancer nodules.  

Marson et al. reported there was a significant correlation between the immunohistological 

expression of cytokeratins (CK), of a range of molecular weights, and thyroid 
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transcription factor (TTF1) to the histological type and grade of lung tumors [46].  From 

this study the CK7 positivity was presented for various primary lung tumors as follows; 

adenocarcinoma (100%), squamous cell carcinoma (23%), bronchio-alveolar carcinoma 

(93%), small-cell carcinoma (37%), large-cell carcinoma (40%), large-cell 

neuroendocrine carcinoma (70%) and carcinoid tumor (4%).  Chu et al. conducted a 

similar study in which the expression of CK7 and CK20 were evaluated in the 

carcinomas from various organ systems. This study also concluded 100% of lung 

adenocarcinomas were CK7 positive [47]. 

Scarpatetti et al. noted there was no precise relationship between the origin of the 

tumor and the immunohistochemical response to the panel of CK antibodies.  However, 

with statistical analysis insightful relationships were uncovered  showing lung 

adenocarcinomas could be separated from metastatic adenocarcinomas with a specificity 

of 95% and a sensitivity of 63% when using a sequential staining scheme, using CK18, 

CK5 and high molecular weight (HMW) CK [48].   

It has been reported that CK8 is expressed in all NSCLC; Pendleton et al. reported 

100% of NSCLC biopsy specimens were CK8 positive [49] while Blobel et al found all 

adenocarcinomas of the lung positive for CK7, CK8, CK18 and CK19. Also, positive 

CK8 and CK18 staining were reported for squamous cell carcinomas [50]. 

2.5.3 Limitations of Traditional Pathology Techniques 

Issues involved with the traditional pathology techniques include the analysis of 

small individual sections of tissue, the absence of spatial correlation between samples, 

severe shrinkage of tissues due to the dehydration processes associated with fixation and 

the very high level of manual manipulation of the tissue required during processing.  The 
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usual pathology sample from transbronchial forceps biopsy is the size of a match head 

and from needle aspiration cytology, a small sampling of cells.  These sample sizes are 

too small to inform on the heterogeneity of the lung nodule.  Even a pathology slide made 

from the lung nodule completely removed at surgery is typically 1 cm x 1cm x 4 microns.  

This is a trivial amount of tissue, less than 0.0004% of the nodule volume, if the nodule is 

1cm3. 

2.5.4 Previous 3D Pathological Investigation of Tumors 

With the recent movement towards the 3D radiological analysis of lung cancer 

nodules has come the realization that nodule growth is likely best assessed as a volume 

change rather than as a diameter change [51, 52].  The complex structural content of 

cancer nodules often hinders the ability of 2D planar data to be representative of the 3D 

volumetric case.  Traditional pathology techniques fall directly into the category of taking 

a small 2D sample of tissue to represent the entire nodule content.  It thus follows that 

steps must be taken to create 3D histopathological datasets.  To date, 3D lung 

histopathology has not been investigated.  The complexity of histopathology imaging 

studies of non-lung nodules in 3D range from the basic segmentation and rendering of 

gastric carcinoma volumes [53] to complete reconstructions of human uveal melanoma 

content [54].  Volume rendering can provide some valuable information regarding tumor 

size, shape and surface topography but is not useful beyond these parameters.  Three-

dimensional histological renderings of prostatic adenocarcinoma [55], hypopharyngeal 

cancer [56] and brain tumors [57] have been created. Boag et al. used digitized 

microscopic images from serial sections of paraffin embedded prostate adenocarcinomas 

to create 3D reconstructions [55].  In doing so they found that ‘although apparently 
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separate in the 2D images of routine microscopy, 3D renderings demonstrated that the 

glands of Gleason grade 3 adenocarcinoma in fact interconnect to form a complex array 

of intertwined tubules.’  Hence, while there are limited publications relating to cancer 

structure in 3D, it is clearly an important area for future investigation.  This is particularly 

true for lung cancer, the structure of which has not yet been investigated in three-

dimensions. 

2.5.5 Lung Nodule Heterogeneity 

The term ‘lung nodule heterogeneity’ is loosely defined and interpreted 

differently based on medical specialty.  On a cellular level, the term heterogeneity has 

been linked to cancer nodules containing more than one histological sub-type [58].  In 

this case the heterogeneity is in reference to histological classification of mixed sub-types 

in the cancerous portion of the nodule.  The purpose of describing this form of cancerous 

tissue heterogeneity was, and remains, important for determining prognostic and 

treatment guidelines [43].  More recently, lung nodule heterogeneity is being described 

and evaluated, extending beyond the cancerous component of the nodule to included 

vascularity, fibrosis and necrotic tissue [59, 60].  These initial studies have indicated 

there is a statistically significant correlation between the proportions of necrosis and 

fibrosis within a lung nodule and patient outcome.  This may lead to future sub-type 

classifications of lung nodules extending beyond the cancerous portion to also include 

non-cancerous tissues of the nodule. However, large challenges are already faced in 

obtaining consistent classifications of histological sub-typing due to a large dependence 

on subjective assessment and the reliance on 2D assessment of a potentially complex 3D 

biomass.  Automated systems which aid in the identification and quantification of 
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important features with in the histopathological data would not only be highly valuable  

for the future exploration of possible sub-type to outcome relationships but also necessary 

if the complexity of sub-type classifications incorporated into the clinical setting 

continues to escalate.  

From a radiological perspective, lung nodule heterogeneity is a term used in 

reference to the grayscale Hounsfield Unit (HU) variance as viewed in MDCT data.  It is 

widely accepted that the radiological representation of lung nodules may be linked to the 

histological sub-type, such as ground-glass opacities correlated to BAC [61-63].  What is 

poorly understood is if the correlation between HU variance and underlying tissue 

structure extends beyond the solid and non-solid nodule components, to the level of 

cellular tissue types.  

From a pharmacological perspective, the lack of consideration given to lung 

cancer heterogeneity has lead to the acceptance of misleading standards for the evaluation 

of treatment approaches [64].  Currently, clinical research has been directed towards 

shortening the drug assessment cycle by replacing the survival statistic with 

radiologically obtained indications of response [65].  Many pharmacological studies 

evaluating new cancer treatment agents, use a reduction of nodule dimension in MDCT 

as indication of positive response, however this measure does not take into consideration 

that the nodule biomass may contain a large proportion of other non-cancerous cell types 

[66]. Hence a drug may be effective in destroying all cancer cells without significantly 

reducing the nodule mass, an occurrence not factored into the assessment methods, likely 

leading to effective drugs being falsely classified as un-effective.   
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2.6 Medical Image Registration 

Registration is the process of aligning one image to another.  More specifically, it 

involves finding the transformation which map points in the moving image to 

corresponding points in a fixed source image.  The basic components of a medical image 

registration algorithm are the two image sets (moving and fixed), an interpolator, a 

metric, an optimizer and a transform.  The transform determines how the points (or 

pixels) from the moving image are mapped to the fixed image. The interpolator 

extrapolates the image intensities of the moving image. The metric is used to evaluate 

how well the moving image corresponds to the fixed image and the optimizer modifies 

the parameters of the transform based on feedback from the metric [67]. 

The process of image registration is widely used for medical applications such as 

tracking disease progression over time, fusing multimodal images, inter-patient 

comparison and atlas based segmentation [68-70]. The selection of the registration 

components is greatly influenced by the type of images at the input and the level of 

accuracy required at the output.    

2.6.1 Histopathology to Computed Tomography Registration 

Methods 

For many years, it has been acceptable to correlate pathological findings with 

external imaging observations by general comparison.  Kennel et al. presented histology 

sections of mouse lungs next to roughly corresponding micro-CT and used arrows to 

highlight suspected tumor foci in the micro-CT data and confirmed foci in the histology 

images [33].  For this case, registration of the datasets may have made a more compelling 

statement but it was not necessary to meet the objectives of the study.  A prospective 
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pilot study was conducted by Chan et al. to correlate tumor size on CT with tumor sizes 

measured microscopically in non-small cell lung cancers [71].  In this basic study the 

resected tumor was manually aligned to the approximate orientation of the in vivo CT 

imaging plane and transverse sections for histological preparation were made.  The 

boundary from the CT data was then compared to that of the histological sections with 

the conclusion that CT over-estimated the size of the tumors to a degree greater than what 

could be accounted for by the significant tissue shrinkage through histological 

preparation.  This study effectively avoids the possibility of creating false matching by 

using only rigid registration, but in doing so the investigators are unable to make any 

quantitative conclusions regarding boundary representation.  While the objectives of this 

study are highly important, it is clear that a methodology with greater precision, 

repeatability and accuracy is required. 

For more specific comparative studies such as boundary representation or spatial 

distribution of tissues, the distortions caused by histological processing must be 

compensated for in some way.  Some studies have investigated the non-rigid alignment of 

histology to non-destructive data, such as MRI and micro-CT.  Jacobs et al. employed a 

modified head and hat surface-based registration to align rat brain MRI data to 

corresponding histological sections [72].  Clarke et al. composed a multimodal mapping 

of carotid atherosclerotic plaque components [73].  The approximate matching MRI and 

micro-CT slices were located by visual inspection and non-rigidly registered using the 

Delaunay triangle method.  Registration approaches such as these, involve a high risk of 

introducing false information due to the non-rigid registration of the histology data to a 
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non-corresponding image slice.  A spatial reference system is required such that the 

correct corresponding base image can be located for each warped image.  

2.7 Significance and Innovation 

It is the goal of this study to create 3D, cross-registered, multimodal datasets 

relating the complex histopathology of lung nodules from a cellular level to density based 

representations.  To facilitate the creation of this dataset an automated tissue 

characterization process for the histopathology data is required to replace manual 

segmentation.  The datasets will be used to investigate the ability to distinguish the tissue 

types in micro-CT and MDCT data.  

The quantified distribution of tissues within complete, lung cancer nodules 

sections has not been previously investigated.  Defining tumor tissue distributions in 2D 

and 3D will reveal insight into the projected growth patterns of these nodules.  This 

information may impact treatment development in forms of delivery methods and how 

best to target the malignant components of a nodule.  The spatial relationship between 

tissue types with the nodule is also extremely important for establishing guidelines for 

traditional biopsy sampling and new optical biopsy techniques.  If large degrees of 

heterogeneity occurred in lung cancer tumors, it is likely that cancerous regions may be 

missed by biopsy.  This is particularly pertinent for new optical biopsy techniques which 

possess a relatively small field of view.  With knowledge of the average variance in 

cancerous tissue distribution versus other tissues in lung nodules, statistical measures 

may be used to guide the resolution and sampling field required for reliable biopsy 

results. 
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The creation of a process model for the acquisition and registration of 

histopathological data to corresponding ex vivo and in vivo MDCT data has high potential 

to impact clinical and research arenas.  As there is no complete database containing 

registered lung nodule pathology to corresponding MDCT data, it is impossible to 

evaluate the extent of information which is captured in an MDCT scan.  This correlation 

may have a clinical significance in bridging radiological and pathological classifications 

of lung nodules.  This is of particular interest in the case of classifying BAC subtypes 

which are linked to differing prognostic statistics [11].  Further understanding of the 

relationship between lung nodule tissue type and MDCT representation will impact 

research in computer aided diagnosis algorithms while also providing a valuable means 

of validation.   

This method of correlation between non-destructive imaging and histopathology 

would also be of value to industry.  Research and technological development are largely 

driven by a ‘needs’ basis. It is required to evaluate the capabilities and limitations of 

available systems in order to determine new ‘needs’ for the non-invasive imaging and 

evaluation of lung nodules.  

The generation of an automated segmentation algorithm for lung nodules in 

histological data may have a significant impact on patient care in the future.  This may be 

an effective method of evaluating the ability of pathologists to correctly estimate the 

proportion of tissue types within a nodule.  Research may also be conducted, as to the 

prognostic significance of varying proportions of tissue type within a nodule.  Current 

research has already indicated that the proportion of fibrotic tissue within a nodule can be 

correlated to increased grades of invasion, while the proportion of cancerous tissue 
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remains relatively constant [74].  However, the manual identification of these tissue 

proportions by expert pathologists is neither time nor cost efficient and the results are 

also susceptible to human error.  
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Figure 2-1:  The pulmonary airway structure.  Graphical depiction of the pulmonary 
airways showing the conducting and respiratory airway segments. The Acinus is the 
terminal, respiratory region of the airways and includes the respiratory bronchioles, 
alveolar ducts, alveolar sacs and alveoli. 
 
Reproduced from Elderlman 2006 [75] 
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Figure 2-2: The terminal acinus.  Highlighted is the cellular composition of the 
respiratory bronchiole wall which contains ciliated cells, serous secretion and clara cells 
while the alveolar wall consists of type I and type II pneymocytes.  
 
Reproduced from Mckee 2007 [76] 
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CHAPTER 3  

DATA ACQUISITION PIPELINE 

3.1 Tissue Fixation 

The structural integrity of the lung tissue must be maintained through the fixation 

process if direct comparisons are to be made between the in vivo image datasets and those 

following fixation.  Formaldehyde fixation or air drying fixation affect the size and 

density of the lung, causing discrepancies between pre- and post-fixation measurements. 

A modified Heitzman technique has been employed to fix lung tissue, maintaining the 

structural integrity of the parenchyma [77].  Using a glycol rich fixation solution the 

water in the lung tissue is replaced by oil and fixed at a lower inflation pressure than 

traditionally used – a pressure we have established after similar work in mouse and sheep 

lung.   

We have conducted a number of studies to investigate the optimal fixation 

pressure for radiological and pathological correlations.  Imaging is performed with lungs 

in situ at an applied airway pressure.  Then fixation is performed at that airway pressure, 

using the glycol fixation technique and image data is collected again.  Volumetric 

comparisons are drawn between the lung volumes in situ and following fixation.  Tracing 

of the lung boundaries for volumetric assessment in MDCT and where applicable, micro-

CT datasets are conducted using our PASS software.  PASS is a pulmonary analysis 

software developed to aid the objective of other studies within our laboratory, and which 

features a number of analysis tools, including boundary tracing.  We have demonstrated 

that for sheep lungs the inflation pressure to fix the lungs, and keep them at the same lung 

volume as total lung capacity in the intact animal, with maintenance of the lung density 
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on MDCT scanning is of the order of 18 cm H2O pressure [78].  Using mice models it has 

been demonstrated that a statistically insignificant difference of 0.6% between in situ and 

fixed lung volumes can be achieved with a fixation pressure between 10 and 15 cm H2O 

[79].  In accordance with these results a lung fixation pressure of 15 cm H2O will be used 

for the fixation of the resected human lung lobes used in this investigation.    

 

3.2 Large-scale Image Microscope Array (LIMA) 

A system was required to bridge the gap between non-destructive imaging 

techniques, such as MDCT, and destructive histopathological imaging.  Current 

processing techniques do not retain any spatial correspondence between the generated 

histopathological slides and the original 3D structure of the tissue of interest.  Hence, a 

purposefully built system was developed – the large image microscope array (LIMA). 

The LIMA system consists of both innovative hardware and software developments to 

allow tissue to be sectioned and imaged with the relationship between the generated 

slides and the original 3D structure maintained.   

3.2.1 LIMA Hardware 

Due to the lack of an appropriate sectioning instrument in the commercial market, 

a series of products were purchased, modified and assembled to constructed the LIMA 

system [80].  In summary, the adaptation of the Leica SM2500 microtome involved the 

incorporation of a vibrating blade, stepper motor control of the stage and a stage locking 

mechanism.  The vibrating blade system incorporates a base bracket that allows 

adjustment of the height of the knife with respect to the stage.  The knife itself is a 26cm 

surgical trimming blade held via a vice mechanism in the vibration frame.  Hence the 
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LIMA system is capable of sectioning a very large field of 25 x 25 x 25cm.  The stepper 

motor control of the stage ensures precision by generating a uniform cutting speed and 

also permits the interfacing to a computer.  The stage locking mechanism is also 

computer controlled and acts as a “photo stop” where by each time a section is made the 

stage is brought back to the same location and locks into place.   

The image acquisition component of the LIMA system hardware is composed of a 

Leica MZ16a stereomicroscope set up with a 1x planar achromatic objective and a 10x 

eyepiece.  This specific microscope carrier system was selected due to its flexibility in 

performing bright field and fluorescent microscopy of stained and non-stained specimens.  

The microscope has a magnification range of 7.11x to 115x at a maximum resolution of 

420 line pairs in this configuration.  Digital image attainment is achieved through the use 

of a JenOptik charge-coupled device (CCD) digital camera.  The active image area of the 

CCD is a 1300 by 1030 pixel array with a pixel pitch of 6.7µm.  The camera has a multi-

shot feature, which can be used to increase the effective pixel count from 1.3 mega pixels 

to 12 mega pixels.  Image data acquired by the camera is transferred via a FireWire IEEE 

1394 to the computer. 

The microscope and CCD camera coupling is maneuvered over the sectioned 

tissue surface via a Velmex Bislide parallel coupled gantry system.  The gantry consists 

of a 94cm parallel bislides in the y-axis, an 112 cm single bislide in the x-axis and a 25 

cm single z-axis bislide.  Control of the gantry motion is automated via three computer 

interfaced stepper motors.  At present a standard computer containing an AMD 1800+ 

chip and 60 GB hard drive is being utilized to control and capture the images.  Figure 3-1 

is a photograph of the hardware setup. 
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A high level of precision is needed in sectioning tissue samples and in positioning 

the microscope and camera couple.  Add to this the highly repetitive and time-consuming 

nature of multiple, sequential image acquisition and the necessity of system automation is 

apparent.  Microsoft’s .NET framework, specifically Managed C++, was chosen as the 

programming language used to design the controller for the automation of the LIMA 

hardware and to provide an efficient graphical user interface.   

3.2.2 LIMA Sectioning and Imaging Process 

The LIMA system is advantageous due to maintenance of the spatial 

correspondence between subsequent tissue slices.  This is achieved by the sequential 

imaging of the tissue surface en bloc, followed by the sectioning and removal of that 

tissue slice. The images are acquired via an automated raster scan, for which the 

microscope and CCD camera is moved over the tissue surface via the bi-slides. Once the 

images of the surface are acquired and stored, the vibrating microtome cuts the tissue and 

the user removes the cut tissue slice. This process is repeated to image and section the 

complete specimen. An automated image processing approach has been developed to 

generate large complete composite images from the multiple raster acquired sub images, 

as described below. The tissue slices from sectioning can be processed via standard 

histological processing to generate histological sections.  This specimen sectioning and 

imaging procedure using the LIMA system is summarized in Figure 3-2. 

3.2.3  LIMA Image Content 

The LIMA system was designed to provide a means of gaining ‘ground truth’ data 

for comparison to MDCT images.  The LIMA images can be representative of structural 

ground truth as image content is in no way dependent on reconstruction algorithms.  The 
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images produced by the LIMA system also serve to bridge the gap between whole organ 

density data from MDCT and small scale cellular data from histopathological processing.  

A large benefit of the LIMA data is the color content, which aids in the distinction 

between structures within the image.  The large depth of field in the images can also aid 

the understanding of spatial relationships between structures.  Figure 3-3 (A) illustrates 

the detail captured in a low magnification LIMA image of glycol fixed sheep lung, 

reflecting the branching of a bronchi followed by a pulmonary blood vessel.  Figure 3-3 

(B) shows the detail achievable at the highest magnification, where the shape of 

individual alveoli can be seen.   

3.2.4 LIMA Post Processing 

Our aim to generate image datasets consisting of MDCT images along with high-

resolution images generated from the LIMA system, required the construction of a 

system physically capable of creating large-scale sections and collecting high 

magnification images.  To capture the microscopic structural detail of nodule 

configuration and surrounding alveolar sacs in the resected lung tissue, a 10x 

magnification is required and consequently the field of view is sacrificed.  Many small 

high-resolution sub images are therefore captured per slice of lung.  The system hardware 

alone could not be relied upon to generate the precisely contiguous digital color sub 

images.  Image registration was employed to correct misalignment in adjacent sub images 

such that a high-resolution large field composite could be generated. 

For the completion of a full LIMA system dataset a large number of images 

would be required and hence image processed.  With this in mind, the technique chosen 

needed to be robust and require little to no human interaction.  With regards to the 
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creation of three-dimensional renderings as well as the integration of segmentation and 

analysis tools, a flexible, open source C or C++ based toolkit was desired. The National 

Library of Medicine Insight Segmentation and Registration Toolkit (ITK) fulfilled these 

requirements.  

An image mosaic algorithm has been developed for creating large field composite 

images for the LIMA, Figure 3-4 [81]. The algorithm consists of a number of separate 

filters required to perform the various stages involved in creating the large field 

composite image.  A filter exits to extract the overlapping regions within two image tiles 

and converts these extracted regions to grayscale such that further image processing 

computation is simplified.  A registration algorithm consisting of a translation transform, 

a linear interpolator, a regular step gradient optimizer and a mutual information metric 

determines the alignment transform required to match the two overlap regions.  The 

alignment transform is then applied to the images to correct the respective misalignment.  

These filters have been linked such that no human interaction is required after initiation, 

to create a complete large image composite corresponding to each slice of tissue. 

To test the ability of the registration algorithm to reliably align the color images 

produced by the large image microscope array system, a simple test was performed using 

sheep lung tissue.  For a low (7.11x) and a high (115x) magnification source images, the 

same process was applied to examine the registration algorithm accuracy.  From the 

source image of dimensions 1300 x 1030 pixels, two cropped images of dimensions 500 

x 500 pixels were obtained using the region crop filter.  One image was obtained with a 

40 pixel displacement in the x-axis and a 30 pixel displacement in the y-axis with respect 

to the other.  The two cropped images were then input to the registration filter.  The 
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registration algorithm was able to exactly recover the applied translation parameters for 

both low and high magnification images, requiring computation time of less than two 

seconds.   

Figure 3-5 illustrates the cropping of the regions and the result of the difference 

filters before and after the registration process was applied.  The differences in image 

content are created by subtracting the pixel graylevels in one image from the 

corresponding pixel graylevels in the other.  If both pixel graylevels are equal then the 

result of the subtraction should be a black pixel.  As can be seen below, the difference is 

great in the before registration image and removed after registration.  The band of gray 

pixels at the border of the after registration image is due to the correction in misalignment 

between the images. 

 

3.3 Lung Nodule Data Acquisition Process 

3.3.1 Lung Nodule Selection 

A multi-disciplinary team was established to facilitate the identification of 

suitable patients and the collection of resected tissue.  The team consisted of 

cardiothoracic surgeons, nurses, surgical pathologists, pulmonologists, and biomedical 

engineers.  The University of Iowa Institutional Review Board (IRB) approved the 

collection of resected lung tissue for the purpose of this study. 

Patients identified for the study by the multi-disciplinary team were required to 

meet the following inclusion criteria:  

• Requiring surgical resection 

• Peripherally located lung nodule 
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• Estimated nodule cross section less than 2.5cm in at least one axis 

Exclusion from the study resulted in the case of; 

• Cellular classification of type other than adenocarcinoma  

• Pregnancy 

• Under the age of eighteen 

Sputum, risk factors, pre-operative x-ray, MDCT and/or PET imaging and in 

some cases biopsy samples were used by the cardiothoracic team to evaluate a suspicious 

nodule and determine if surgery was required.  Surgical resection may occur via wedge 

resection or lobectomy based on the location, size, stage of the nodule and preference of 

the cardiothoracic surgeon.  A wedge resection involves the removal of a small portion of 

the lobe while in a lobectomy procedure the entire lobe is removed.  However, wedge 

resected specimens were utilized for protocol experimentation and testing only as these 

specimens could not be accurately registered.  The optimal cases for the study were 

lobectomy procedures such that inflation of the lobe for imaging and fixation purposes 

was possible.  This inflation was necessary in the registration of the datasets to a common 

coordinate system. 

A restriction to the size of the nodule was applied because a pathology slide has a 

maximum sample field dimension of 2.5 cm. Hence, as it was desired for a complete 

nodule cross-section to mount on a single slide, there had to be at least one orientation of 

the nodule less than 2.5 cm in diameter.  

Efforts were made to target nodules of specific cellular classification, namely 

adenocarcinomas and benign nodules, based on the peripheral location restriction, pre-
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surgical data and opinions of the multi-disciplinary team.  If available via pre-surgical 

biopsy, cellular classification was used to identify patients for exclusion.  

3.3.2 Patient Recruitment and Consent 

Recruitment for study participants is conducted through the University of Iowa 

Hospitals and Clinics cardiothoracic team, the Holden Comprehensive Cancer Center and 

through the Bioengineering Research Partnership Grant study.  During the patient’s pre-

surgical visits a brief history and physical exam was performed, the study was described 

in detail and consent was obtained.  Women of child bearing age were requested to 

undergo a pregnancy test.   

Between October 2005 and May 2008, 17 suitable patients were identified and 

consented for participation in the study, 8 males and 9 females.  Six of these 17 potential 

datasests were not collected due to changes in surgical plan or surgical pathology 

processing requirements.  Of the remaining 11 datasets, there were 7 adenocarcinomas, 3 

squamous cell carcinomas and 1 neuroendocrine carcinoma.   

The age of the patients ranged from 51 years to 79 years with an average body 

mass index of 26.  The study pool included nine females and two males.  The ethnicities 

of the subject pool included ten Caucasian patients and one African American patient. 

Ten out of the eleven patients had a significant smoking history with the average 

consumption being one package of cigarettes per week for the past thirty years.  The only 

patient enrolled in the study without a smoking history, lived for over fifty years with a 

heavily smoking spouse.  

From pre-surgical MDCT imaging, the nodules diameters ranged from10mm to 

50mm.  The staging of these nodules ranged from stage IA to stage IIIA, based on the 
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final surgical pathology reports. Table 3-1 presents a summary of the characteristics, 

diagnoses and staging of study patients from whom data was collected.  Of the patients 

listed in Table 3-1, one squamous cell carcinoma was used to experiment with fresh and 

fixed micro-CT imaging protocols, one adenocarcinoma case was used for a synchrotron 

imaging study and another adenocarcinoma case had a poor fixation result affecting the 

histopathological data collection.  Hence, extensive data was collected for these datasets 

but as they were not complete they were excluded from the analysis portion of this study. 

3.3.3 Image Acquisition and Tissue Processing Overview 

An extensive image acquisition and tissue processing scheme was established in 

order to generate a comprehensive dataset for human lung nodules which is summarized 

in Figure 3-6.  Table 3-2 depicts a timeline chart of the process highlighting the work 

required to obtain one dataset.  In all, it requires approximately 236 hours of processing 

time to acquire all the data for a single nodule.  This time estimate does not include the 

lag time often encountered when waiting for specific equipment to become available for 

use. 

3.3.3.1 Pre-Surgical Scan Data Obtained 

As a component of a lung cancer patient’s clinical care, a pre-surgical MDCT 

scan is required by the multi-disciplinary cancer service at the University of Iowa.  This 

pre-surgical dataset may be collected prior to or following consent of the patient.  In 

consenting participation in the study the patient permited access to previously collected 

imaging pertaining to the lung nodule.  From the pre-surgical MDCT data, information 

relating to the density of the nodule in vivo was gained. 
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3.3.3.2 Surgery 

On the patient’s day of surgery, they were transported to the operating room for 

the resection procedure.  The resection procedure was conducted by the cardiothoracic 

surgical and anesthesiology teams.  Their involvement, including administering pre-

procedure medications, conscious sedation, performing tissue biopsy, obtaining consent 

for surgery and post surgical care, is part of clinical care.  The amount of tissue removed 

from the patient during surgery was independent of study participation and was 

determined by the cardiothoracic surgeon. 

The surgical pathology team evaluated the specimen following resection.  In the 

case of a wedge resection procedure, the pathologist immediately removed a segment of 

the nodule for diagnosis such that the surgical team may determine if a full lobectomy 

was required.  The removal of this tissue prevented the subsequent inflation of the tissue 

and hence deemed it insufficient for inclusion in the complete study protocol.  These 

tissue samples were however useful in the development of the study protocols.  With a 

lobectomy, initial measurements and removal of the accessible lymph nodes were 

conducted immediately following the patients surgery but the nodule was not disturbed.  

As no immediate action was required for patient care, the final diagnosis was made using 

the histology sections generated by this study’s processing procedures.  

3.3.3.3 Tissue Imaging and Fixation 

Following evaluation of the tissue in surgical pathology, the lung lobe specimen 

was cannulated through the major airway and inflated with air to 15 cm H2O pressure.  

With the resected lobes, in which there was some connection to surrounding lobes, 

surgical staples were used to prevent air pressure escaping.  With the lung lobe inflated, it 
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was MDCT scanned.  The tissue was then fixed via the modified Heitzman fixation 

technique at the same airway pressure and air-dried in a drying oven.  Following fixation 

the fixed lung lobe was MDCT imaged again. 

Wedge resection specimens could not be inflated due to the absence of a major 

airway inlet and due to the removal of part of the nodule in pathology.  Hence, these 

specimens were fixed and dried without inflation. 

3.3.3.4 Nodule Separation and Imaging 

Following fixation and using MDCT scan control, the nodule and the immediate 

surrounding tissue was dissected en-bloc from the lung lobe using a thin autopsy knife.  

By using MDCT scan control the nodule could be resected as a cube of tissue with 

precision and without damaging the structural or spatial relationships.  The isolated 

nodule was then imaged again using the MDCT, and immediately afterwards using the 

micro-CT scanner.  Removal of the nodule from the lung lobe was required due to the 

small imaging field of the micro-CT.  Then the nodule was sectioned and imaged using 

the LIMA system.  Of the sections created by the LIMA, every intact slice underwent 

histological processing.  

3.3.4 Nodule Stabilization 

It is desirable to minimize the complexity of registering the multimodal datasets.  

Hence some hardware was created to stabilize the isolated nodule between MDCT, 

micro-CT scanning and LIMA sectioning.  The MDCT and micro-CT imaging systems, 

acquire data in the transverse plane, while the LIMA system cuts and images along the 

coronal plane.  To ensure there was a consistency between the direction and angle of the 

imaging planes, the specimen was mounted to a polyethylene base plate.  The 
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polyethylene material was selected due to its very low attenuation in radiological imaging 

systems.  Parallel grooves were etched into the base plate to facilitate tissue attachment.  

Nylon screws were used to vertically attach the base plate to a polymethyl methacrylate 

mount arm.  The specimen was imaged in this configuration on both the MDCT and 

micro-CT systems.   

For sectioning on the LIMA system, the base plate was removed from the mount 

arm and attached horizontally, with metal screws, to the specimen stage.  Interlocking 

metal stacking support brackets were attached to the base plate and the interior space was 

filled with agarose.  When set, the agarose formed a solid support media to prevent tissue 

motion during sectioning.  The metal stacking support brackets and metal base plate 

became cold as the agarose solidified in a refrigerated environment.  During sectioning 

the metal insulated the agarose, keeping it cool and hence at an ideal solid consistency.  

The 4 mm metal stacking brackets were removed one by one as the specimen was 

sectioned.  Images of the developed nodule stabilization system are shown in Figure 3-7. 

3.3.5 Imaging Protocols 

3.3.5.1 Computed Tomography 

The scanning protocols for the clinical in vivo MDCT scan varied across 

institutions and also with in the University of Iowa Hospitals and Clinics.  All clinical 

MDCT scans were conducted with a 120 kV.  However, the current ranged from 60 to 

127 mAs, the pixel spacing from 550 to 1000 microns, slice thickness from 2.5 to 5 mm.  

There also existed a great variation in the reconstruction kernel, including B20, B30, 

B31, B40 and B70.  The MDCT scanner systems also ranged including models from 

Siemens, Phillips and Genesis. For an average sized patient a chest field of view 
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measured approximately 30 cm2.  The majority of patients were imaged with some form 

of contrast agent.   

IRB approval was gained to conduct high resolution, perfusion imaging of the 

patient prior to surgery.  This protocol began with a low dose volume MDCT on a 

Siemens Somatom Sensation 64 with 120 kV, 40 mAs with 750 micron slice thickness, to 

locate the nodule.  Following, a 3-second bolus delivery of contrast agent would be 

delivered and 15 scans over 2.8cm would be acquired using cardiac gating, 80 kV and 

150 mAs.  Unfortunately no patients participating in the study consented to this pre-

surgical imaging portion of the study. 

For the MDCT scanning of the resected lobe containing the nodule the protocol 

and the effective field of view were different from that of the in vivo case.  As the lobe 

was resected from the patient the field of view was reduced to approximately 15 cm by 

15 cm, and hence the resolution increased.  Also, radiation dose was no longer a factor in 

the protocol selection.  A Siemens Somatom Sensation 64 MDCT scanner was used, 

scanning 120 kV, 140 mAs with 0.6 mm slice collimation for the fresh resected lobe, 

inflated to 15 cmH2O, and fixed lung lobes.   

For the imaging of the isolated nodule the protocol again uses 120 kV, 140 mAs, 

with a slice collimation of 0.6 mm on a Siemens Somatom Sensation 64 MDCT scanner.  

The field of view for the isolated nodule scans could be greatly reduced and hence the 

highest resolution from the MDCT was achieved.  

From the MDCT scans conducted we gained density information, with 

increasing in plane resolution (pixel sizes of approximately 600 micron to 100 micron) 
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relating to the cancer nodule in vivo, in the resected lobe and in the nodule physically 

isolated from the lobe. 

3.3.5.2 Micro-CT Processing 

We developed protocols for the SkyScan1076 micro-CT scanner system 

(SkyScan, Kontich, Belgium) and more recently the MicroCAT II (Siemens Pre-Clinical, 

Knoxville, TN) system.  The micro-CT modality provided density based information 

from x-ray but with a much higher resolution than that achievable with conventional 

MDCT systems.  As the lung nodules were resected and fixed prior to micro-CT imaging 

the exposure time and radiation dose were not influencing factors in determining protocol 

settings.  

The SkyScan system featured an x-ray source capable of 20-100 kVp and a 

maximum power of 10W.  Settings for voltage and current were restricted such that 

increasing one would cause a decrease in the other to balance the required power. The 

final protocol for the isolated fixed lung nodules using the Skyscan 1076 micro-CT 

scanner involved a 50 kVp, 200 microA, an exposure time of 1770 ms and a binning of 2 

to produce isotropic voxels of 18 micron.  Three of the eleven collected datasets were 

imaged using this system and protocol.   

The MicroCAT II scanner had a greater flexibility as the current and voltage 

could be adjusted independently from 0-500 microA and 0-130 kVp, up to a maximum 

power output of 65 W.  With a power level of 8 W or less, the focal spot size at the 

source is 10 microns.  It was desired to identify a protocol which achieved a high spatial 

resolution while minimizing ring artifact and noise.  Figure 3-8 illustrates the resulting 

data from four imaging protocols on a wedge resected lung nodule specimen. The image 
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in Figure 3-8A shows the best compromise between maintaining a high spatial 

resolution, when compared to Figure 3-8C and Figure 3-8D, and minimizing ring 

artifact, as occurs in Figure 3-8B.  Hence, it was experimentally determined for the 

MicroCAT II system 80 kVp, 100 microA, an exposure time of 4000ms and a binning of 

2 to produce an isotropic voxel of 28 micron.    

From the micro-CT scanning of the isolated lung nodule, high resolution 

(isotropic voxels of 18 or 28 micron) density information as well as surface border 

characteristics for the isolated lung nodule was generated. 

3.3.5.3 LIMA Processing 

Following previously defined imaging stages, the isolated nodule was sectioned at 

250 micron using the LIMA system.  The in-plane resolution achievable with the LIMA 

system was dependent on the degree of magnification chosen and ranged from 15 micron 

to 0.9 micron.  A compromise had to be reached between gaining the most amount of 

valuable information and the time required to section and image the tissue.  It was 

determined through experimentation with the LIMA system that a magnification of 10x, 

producing a pixel size of 8.5 micron was appropriate for this study.  The images were 

obtained using white light and indicate the color of the specimen.   

Sectioning and imaging of the isolated nodule using the LIMA system resulted 

in a low magnification, light microscopy dataset featuring color information of the 

nodule.  

3.3.5.4 Histopathology Processing 

The tissue sections created by the LIMA were retained for processing via 

traditional pathology techniques, with staining, to reveal cellular detail.  The pathology 
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data was utilized as confirmation of nodule content and regions.   For the non-destructive 

(micro-CT) and destructive (LIMA and pathology) imaging of the isolated lung nodule 

the slice thickness between images was very different.  The micro-CT dataset was created 

using a protocol providing a slice thickness of 28 micron while the LIMA datasets had a 

slice thickness of 250 micron.  Every slice of tissue from the LIMA system underwent 

histological processing, however due to the delicate nature of the tissue sections, not all 

submitted slices produced usable histology slides.  

Each tissue section generated by the LIMA was submitted in plastic cassettes for 

histological processing.  The sections were fixed for at least 60 minutes before 

processing.  Processing of the tissue involved the use of an ethanol-based express tissue 

processing system.  Paraffin wax was used as an embedding medium to form the tissue 

‘block’.  The blocks were sectioned at 4 µm using a conventional microtome, with three 

sections per tissue block slide mounted.  The orientation of the tissue blocks was 

important as it was desired to collect the sections for mounting from the top of the block 

to ensure the nodule content captured in the pathology slide would closely match the 

content in the corresponding LIMA image.  

Once the sections were mounted on glass slides they underwent staining.  The 

staining protocol involved the creation of one haematoxylin and eosin (H&E) stained 

slide and one immunohistochemical stain.  H&E is a common and easy to perform 

staining technique which is used for cancer diagnosis in pathology, while the 

immunohistochemical stain was experimentally identified as described in CHAPTER 4 

below.  The unstained slides were collected and retained for the investigation of 

alternative staining techniques.   
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The slides produced were digitized using a ScanScope system (Aperio 

Technology). The light microscopy imaging was performed with a 20x objective which 

produced pixel sizing of 0.5 micron.  As these resulting images were extremely large and 

contain a much higher resolution than required, bi-cubic resampling was used to reduce 

the resolution of the images to 2.5 micron.  

The histopathological processing of each section produced by the LIMA system 

resulted in two digitized histopathology datasets (2.5 micron pixels); one traditional 

H&E stained and one immunohistochemical stain with contrast between tissue types.  
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Figure 3-1: The hardware of the large image microscope array (LIMA) system, 
featuring a unique microtome and a stereoscope coupled with a digital camera. 
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Figure 3-2: Summary of the large image microscope array (LIMA) system 
sectioning and imaging process. This process results in the generation of a color dataset 
which can be used as the ground truth for linking non-destructive image sets, such as CT 
to destructive histopathology image sets.  
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Figure 3-3:  Sheep lung imaged using the minimum and maximum magnification of 
LIMA system.  An example of images of fixed sheep lung from the large image 
microscope array (LIMA) system at original magnifications of 7.11x (A) and a 115x (B). 
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Figure 3-4: Flow chart illustrating the major components of the image mosaic 
algorithm.  A fixed reference image and a moving image are loaded into memory and the 
overlapping regions common to both images are identified. The overlapping regions are 
fed into the registration algorithm that consists of a transform, interpolator, metric and 
optimizer. The resulting stitched image is delivered as an output from the system, along 
with an image of the squared difference between the overlapping regions before and after 
registration. 
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Figure 3-5:  Assessment of the registration algorithm.  The assessment of the 
registration algorithm in realigning a translated region from a 7.11x magnified image of 
lung tissue. The difference in image content after registration illustrates the perfect 
realignment of the two regions.  
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Table 3-1: Summary of characteristics and diagnoses 
for study patient group 

 
Characteristic   

 mean range 
Age (years) 66 51-79 
   
Body Mass Index (BMI) 26 21-33 
   
Nodule Size from Radiology Report   
 Max. diameter 27 14-50 
 Min. diameter 19 10-15 
  n % 
Gender    
 Male 2 18 
 Female 9 82 
Race    
 Caucasian 10 91 
 African American 1 9 
Site    
 Right Upper Lobe 1 9 
 Right Middle Lobe 0 0 
 Right Lower Lobe 6 55 
 Left Upper Lobe 3 27 
 Left Lower Lobe 1 9 
Diagnosis   
 Adenocarcinoma 7 64 
 Squamous Cell Carcinoma 3 27 
 Neuroendocrine Carcinoma 1 9 
Stage    
 Stage IA 5 46 
 Stage IB 3 27 
 Stage IIA 0 0 
 Stage IIB 2 18 
 Stage IIIA 1 9 
 Stage IIIB 0 0 
 Stage IV 0 0 
Smoking History   
 Never 1 9 
 <1 pack per week 2 18 
 1 pack per week 6 55 
 2 pack per week 1 9 
 3 pack per week 1 9 
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Figure 3-6: A summary diagram outlining the image acquisition and tissue 
processing procedure. 
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Table 3-2: Timeline of the processes required to acquire the multi-modal data for 
one complete lung nodule dataset.   

 

Process Time 
Experimentation preparation  
 Gather required materials 10 min 
 Measuring and mixing of fixative solution 30 min 
 Set up of fixation station 30 min 
Patient   
 Identification 10 min 
 Consent 1 hr 
 Download and save presurgical data 2 hr 
Fresh Lobe  
 Surgical pathology preliminary assessment 30 min 
 MDCT of fresh lobe at inflation 1 hr 
 Modified Heitzman fixation; in solution 52 hr 
 Modified Heitzman fixation; in dryer 90 hr 
 Clean up of fixation station 30 min 
Fixed Lobe  
 MDCT of fixed lobe 1 hr 
 MDCT guided lung nodule gross section 1 hr 
Isolated Nodule  
 Adhere nodule to bracket with glue 3 hr 
 MDCT of isolated nodule 1 hr 
 Micro-CT of isolated nodule (with recon) 5 hr 
 Embed nodule in agar and set 8 hr 
 Calibration and set up of LIMA system 1 hr 
 LIMA sectioning and imaging 6 - 8 hr 
 Post processing LIMA images 2 hr 
LIMA sections  
 Place sections in histology cassettes 30 min 
 Ethanol based express processing 1 hr 
 Paraffin embedding/sectioning/mounting 24 hr 
 Slide drying 12 hr 
Histology Slides  
 H&E staining 2 hr 
 Immunohistochemical staining 3 hr 
 Slide digitization 7 hr 
All image files  
 Transfer and backup of datasets 8 hr 
TOTAL TIME FOR SINGLE DATASET 236 hr 
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Figure 3-7:  Schematic diagram of the nodule stabalization system developed for 
maintaining the alignment between the imaging planes from MDCT.  Micro-CT and 
the large image microscope array (LIMA) system.  Shown are the components and 
imaging plane of the MDCT and micro-CT modalities (A) and the LIMA system (B).  
Photographs of the actual hardware is shown in (C) which show the detail of the mount 
arm and the support brackets. 
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Figure 3-8: Comparison between micro-CT imaging protocols using a wedge 
resected lung nodule.  The protocol deemed best suited to the study (A) had an optimal 
power of 8 W and resulted in less ring artifact and blurring than the other protocols (B), 
(C) and (D). 
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Table 3-3: Comparison between the specifications of the datasets, including 
resolution and slice separation. 

 

Modality Destructive 
imaging 

Pixel size 
(micron) 

Slice 
thickness 
(micron) 

Slice 
separation 
(micron) 

 
In vivo CT No 550 to 1000 600 2500 to 

5000 

 

Resected Lobe 
MDCT No 300 600 300 

 

Isolated 
nodule MDCT No 100 600 300 

 

Isolated 
nodule micro-

CT 
No 18 or 28 18 or 28 18 or 28 

 
LIMA Yes 8.5 250 250 

 
Histology Yes 2.5 4 250 to750 
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CHAPTER 4  

HISTOPATHOLOGICAL CLASSIFICATION 

Developing a method for the controlled, volumetric evaluation of lung nodule 

architecture is advantageous to the clinical and research environment.  Recent studies 

have found a valuable link between the proportion of tissue types, such as fibrosis or 

necrosis with in a lung nodule and prognosis [59, 60, 82].  Maeshima et al. found the 

fibrotic proportion of nodule content was an independent prognostic factor, with direct 

correlation between increased fibrotic component and decreased survival.  However, 

studies such as this have relied on the qualitative evaluation of histopathological sections 

to score or grade the appearance of a particular tissue type which provided a limited 

understanding of the nodules complete composition.  

In order to gain a comprehensive understanding of the content and architecture of 

the tissue type distributions throughout a nodule biomass, the cellular content of the 

nodule needed to be identified and segmented.  The histopathology datasets provided 

information content on the cellular content of the nodule.  Based on these 

histophatological datasets, a manual and an automated segmentation approach were 

developed for the purpose of segmenting out the tissue types present.  

 

4.1 Manual Segmentation 

The most widely used staining approach for the clinical diagnosis of lung cancer 

is hematoxylin and eosin (H&E).  H&E staining results in the blue coloration of nuclei, 

pink staining of cytoplasm structures and the intense red coloring of blood cells.  This 
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broad stain is effective in highlighting the cellular structures such that a pathologist is 

able to distinguish cells of differing types.  

A surgical pathologist with a subspecialty expertise in pulmonary pathology 

analyzed the digitized H&E histological images.  An Intuos graphics tablet and pen 

(Wacom) were used to generate mask images corresponding to the different tissues 

identified.  An example of a tissue type mask generated by the manual segmentation of a 

H&E section of lung adenocarcinoma tumor is shown in Figure 4-1.  The cellular based 

tissue types identified and segmented included; solid regions of cancerous tumor cells, 

cancerous tumor cells in a borncioalveolar carcinoma (BAC) configuration, necrotic 

cells, active fibroblastic stromal tissue, inactive (hyaline) fibrosis , red blood cells  and 

normal tissue. 

For the manual tracing of these tissue classes, a set of definitions was established 

to promote consistency across the datasets.  

• Cancer (solid): solid groupings of cancer cells 

• Cancer (BAC): cancer cells following a bronchio-alveolar carcinoma 

invasion pattern, which is a non-solid, alveolar pattern. 

• Necrotic tumor: dead cells of any origin, including cancerous 

• Active fibrosis: majority of fibroblasts (greater than 50% of cells 

fibroblasts) 

• Inactive fibrosis: fibroblasts intermixed with collagen (less than 50% of 

cells fibroblasts) 

• Blood: Groupings of erythrocytes (red blood cells)   
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The task of manually tracing histology sections was extremely time consuming, 

with each section taking well over an hour to complete.  This was a costly process as a 

pathologist with expertise in pulmonary pathology was required to conduct these tracings 

due to the complexity involved in defining the tissue boundaries.  Due to the human 

observer component there may be some inconsistency in the definition of tissue type 

boundaries and there also exists a trade off between the level of detail and the time 

required to complete the traced maps.  These human observer limitations were 

particularly true for the case of H&E stained histology as the boundary between one 

tissue type and another was not clearly highlighted, Figure 4-2. 

 

4.2 Automated Segmentation 

4.2.1 Immunohistochemical Staining for Increased Contrast 

Immunohistochemistry has been used in research studies and in the clinical 

pathology environment to identify lung cancer.  Cytokeratins are found in the 

cytoskeleton of epithelial cells and are hence effective in identifying epithelial derived 

carcinoma.  Furthermore, there are twenty different forms of human cytokeratin which 

are found in normal and malignant epithelial cell lines, different combinations of which 

can be used to characterize poorly differentiated carcinoma [83].  Hence cytokeratin was 

chosen as the immunohistochemical target for highlighting cancerous tumor cells.  It 

should be noted that cytokeratin immunohistochemistry does not selectively target 

neoplastic epithelial cells (versus normal epithelial cells), however, in this study cohort it 

is expected that normal, non-neoplastic cells make up an insignificant portion of the 

biomass.  The primary purpose of this immunohistochemical staining approach was to 
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provide some contrast in the appearance of cancerous tumor cells and all other types 

present within the nodule.  To ensure a positive immunohistochemical staining of all the 

cancerous tumor cells in any NSCLC nodule, a number of cytokeratin weights were 

targeted.  A pan-cytokeratin cocktail was used consisting of Cytokeratin 7 (1:50, Dako 

Corporation, Carpinteria, CA), CK 8/18 (1:200, Abcam, Cambridge, MA) and AE 1/3 

(1:200, Chemicon Int, Tenecula, CA).  To produce the most consistent and dependable 

immunohistochemical staining possible an automated immunostaining system (Dako 

Corporation, Carpinteria, CA) was utilized.  

A number of counterstains were explored to examine the maximal achievable 

contrast between the tissue types of interest.  Hematoxylin and variations of the Masson’s 

Trichrome were tested for suitability.  Hematoxylin is a simple nuclear stain and hence 

highlighted the nuclei of all cell types present.  Masson’s Trichrome is a more 

complicated staining process involving multiple dyes for the differentiation of muscle, 

collagen, fibrin and erythrocytes.  The reagents for this staining technique include; 

Bouin’s fixative, Biebrich Scarlet, Weigert’s Iron Hematoxylin, Phosphotungstic-

Phosphomolybdic acid solution and Aniline Blue and when applied sequentially the 

resulting stain colors nuclei - black, cytoplasm, erythrocytes and muscle - red and 

collagen - blue.  Two modifications of the traditional Masson’s Trichrome counterstain 

were explored.  The first (Mod 1) involved the exclusion of the Bouin’s fixative step and 

the second (Mod 2) included the Bouin’s fixative but excluded the Weigert’s Iron 

Hematoxylin.  Of these staining combinations, the pan-cytokeratin cocktail 

counterstained with the Masson’s Trichrome (Mod 2) counterstain was found to produce 

the greatest contrast between the tissue types of interest, Figure 4-3.  Of particular 
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advantage was the increased contrast between areas of inactive and active fibrosis with 

dense collagen fibers stained blue and predominantly elastic type matrix stained pink, 

Figure 4-4.  To increase the consistency of the counterstaining process an automated 

slide stainer, DRS-601 (Sakura Finetek, CA, USA) was used. 

4.2.2 Algorithm Design 

The immunohistochemical staining approach was developed to increase the 

contrast between different tissue types with in the nodule.  The chosen, pan-cytokeratin 

cocktail with Masson’s Trichrome (Mod 2) counterstain produced the greatest color 

contrast.  Automated staining equipment was utilized for the application of the pan-

cytokeratin cocktail with modified Masson’s Trichrome counterstain in an effort to 

minimize the variation in stain intensity between sections and also between nodule 

datasets.  While these efforts proved successful in minimizing the stain variation between 

sections of a single dataset, the staining across datasets varied greatly.  This proved to be 

a significant challenge in the development of an automated segmentation approach as the 

variation in the staining intensity across the datasets was larger than the separation of the 

color based feature set.   

The developed algorithm used the Lab and HSV color spaces as features for the 

segmentation of the tissue types.  Both these color systems differ from the RGB color 

space in that they were developed to more closely represent the human perception of 

color.  The a and b axes of the Lab system mark the variation from red to green and from 

yellow to blue respectively, while the third channel (L) reflects the luminance.  In the 

HSV color model the three channels represent hue, saturation and value (intensity).  In the 

case of features for the classification of immunohistochemically stained samples the Lab 
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color space is advantageous in that the luminance can be excluded and color is explained 

by orthogonal axes.  The HSV model is preferable when a single value is desired to 

represent the hue in the image.  Figure 4-5 shows an example of representation of the 

colors in the developed immunohistochemical stain approach, in the RGB, Lab and HSV 

color space.  

The large variance in the staining of the different nodule cases meant supervised 

classification approaches were not appropriate for the segmentation of the complete, 

multi-nodule, immunohistochemical dataset.  A k-means clustering approach was chosen 

as a suitable unsupervised algorithm capable of accommodating the variations in staining 

across the nodule datasets [22, 84, 85].  The k-means clustering algorithm attempts to 

optimally partitioned data into a set number of natural groups, k [84].  In general, this is 

achieved by initializing k centroids, c.  Each point in the data is assigned to a group based 

on it’s proximity to that groups centroid.  Once all points are assigned the updated 

centroids for each group are calculated and the process is repeated until there is no 

change in the location of the centroids – indicating a stable partitioning of the data into k 

groups.  The first step in the developed segmentation approach, which is summarized in 

Figure 4-6, was to use k-means clustering to segment the data into regions, using the a 

and b channels from the Lab color space. The Euclidean distance measure was used to 

determine the closest centroid for each point.  To avoid the occurrence of partitions at 

local minima, the clustering was repeated five times.  At each repetition, the total 

distance from all points to their centroids was calculated and the partition result with the 

lowest total distance was chosen.   
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The number of groups, k, was initialized by the user but was restricted to either 

three or four groups. All complete histopathological slides contained at least three tissue 

classes along with background data (k = 4).  However, not all the small sample images 

used for validation contained background pixels (k = 3).  All the histopathological slides 

in the dataset contained cancerous tumor, inactive fibrosis and active fibrosis. The color 

separation of these tissue types, based on the devised staining approach, was the greatest 

and hence directly correlated to the partitioning of the cluster algorithm.  However, the 

labeling of the regions output from the k-means clustering algorithm was randomly 

assigned and bore no reference to the properties of the feature set.  Hence, a hue based 

labeling step was created to assign labels based on the mean hue of the regions.     

The mean hue for each region identified by the k-means clustering algorithm was 

calculated and these values sorted in descending order.  The region with the highest mean 

hue was assigned a ‘mixed’ class label with a pixel value of 1. ‘Active fibrosis’ and 

‘inactive fibrosis’ class labels were assigned to the following ranked hue values and 

identified by pixel values of 2 and 3 respectively.  Finally, if a k of four was selected, the 

lowest ranked region based on mean hue, was assigned to ‘background’, with a pixel 

label of 4.   

The accurate labeling of the cancerous tumor tissue was deemed the highest 

priority for the automated segmentation technique, however, based on the k-means 

clustering approach the blood and cancerous tumor pixels were grouped together.  A 

second pass labeling approach was incorporated to further classify the mixed class into 

cancerous tumor and blood.  A binary mask image was created containing only pixels 

with a ‘mixed’ tissue type label.  This binary mask contained many sub-regions, most of 
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which corresponded to cancerous tumor and a few of which corresponded to red blood 

cells.  Connected component labeling was used to assign new labels to each of these 

individual regions.  For each new region the mode of the a channel (from Lab color 

space) and the area was calculated.  Regions with a mode a value greater than 0.65 and 

an area greater than five pixels were assigned as ‘red blood cells’ and given a pixel value 

of 5 in the original label image.  The threshold of 0.65 for the mode a value separating 

the cancerous tumor and blood classes was determined by locating the average minima of 

the mode a histogram from a number of sample images.   Pseudocode summarizing this 

automated segmentation and labeling approach is in Table 4-1.  

Mode filtering with a two by two neighborhood was applied to the final labeled 

image so that single pixel regions were removed.  Some degree of smoothing of the 

image was desired as many single pixel regions would disrupt the further analysis of the 

dataset.  For illustrative purposes, each label in the resulting segmented dataset was 

assigned the same color as used for the manually segmented result, making the distinction 

between classes clearer to view.  

4.2.3 Results 

The developed algorithm effectively overcame the challenge of accommodating 

different staining intensities across datasets and was able to successfully segment 

cancerous tumor, inactive fibrosis, active fibrosis and blood using the purpose developed 

immunohistochemical staining approach.  The approach was time efficient, delivering a 

segmentation result for a complete histopathology section in less than one minute. Figure 

4-7 illustrates the automated segmentation result for two sample slices, from two 

different nodule cases.   
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The algorithm was limited to identifying a fixed number of tissue types.  Normal 

and necrotic tissue could not be separated from the fibrosis group based on the color data 

in the developed histochemical staining approach.   

For validation purposes, a testing set was created.  Twenty five test sample 

images were randomly selected throughout the immunohistochemical dataset.  Two 

surgical pathologists manually traced the tissue types present in the test samples using the 

Intuos graphics tablet and pen.  The test sample images were limited to 200 by 200 pixels 

so that a high level of detail could be obtained through manual tracing, in a relatively 

short period of time.  Figure 4-8 illustrates some example cases from the testing set. 

Confusion matrices were generated for the evaluation and comparison of the 

observer performances and the automated generated segmentation.  Three matrices were 

generated corresponding to each image in the testing set, comparing the classification 

from observer 1 to observer 2, observer 1 to the automated result and observer 2 and the 

automated result.  Summary confusion matrices, showing the percentage classifications 

across all the test sample images are show in Table 4-2 and Table 4-3.  The comparison 

of the two observer tracings to each other revealed an accuracy of 73 % between the pixel 

classifications across all tissues.  An accuracy of 72 % was found between the pixel 

classifications of observer 1 and the automated result and 69 % between observer 2 and 

the automated result.  

From the confusion matrices for each test image, the sensitivity and specificity for 

the classification of each tissue class was calculated.  Comparable sensitivity and 

specificity results were obtained using the automated segmentation technique when 
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compared to the manual tracings.  The average sensitivity and specificity, with standard 

error, of the segmentation result for each tissue type class are graphed in Figure 4-9.  

The repeatability of the automated segmentation approach was also tested by 

repeatedly running the algorithm, six times over the testing set and comparing the 

confusion matricies.  A standard error of 0 ± 0 pixels was found for all tissue classes, for 

all test images indicating 100% repeatability of the algorithm.  
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Figure 4-1:  Digitized H&E sections are manually segmented by a pathologist with a 
pulmonary subspecialty.  The result of the segmentation is a set of individual tissue type 
maps (binary images) which can be combined into a single representative image.   
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Figure 4-2: H&E histology image of a lung nodule showing the appearance of 
cancerous tumor cells, necrotic tumor, active fibrosis and inactive fibrosis in this 
dataset. (Original magnification 20x) 
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Figure 4-3: Comparison of different staining approaches for the identification of 
tissue types with in lung nodules.  The immunohistochemical pan-cytokeratin cocktail 
highlights the cancerous tumor portion while the various counterstains add additional 
contrast.  The first modification of the Masson’s trichrome counterstain (Mod 1) involved 
the exclusion of the Bouin’s fixative resulting in a predominantly blue counterstain.  The 
optimal contrast between the tissue types was obtained using the Masson’s trichrome 
counterstain without the Weigert’s iron hematoxylin (Mod 2) (Original magnification, 
x20) 
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Figure 4-4:  The pan-cytokeratin cocktail counterstained with Masson’s Trichrome 
(Mod 2) was found to produce the optimal contrast between tissue type regions.  The 
staining approach resulted in tumor cells stained maroon, inactive fibrotic regions stained 
blue, active fibrosis stained pink and red blood cells (erythrocytes) red. (Original 
magnification, x20) 
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Figure 4-5:  Comparison of three color spaces.  Illustration of the pixel colors in a 
nodule sample, stained with the pan-cytokeratin with Masson’s Trichrome (Mod 2) 
counterstain, represented in the RGB, Lab and HSV color spaces.  
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Figure 4-6: Summary diagram of the automated histopathology segmentation 
approach. 



www.manaraa.com

  73   
  

 

 

Table 4-1: Pseudocode for the automated segmentation approach. 
 
 
Automated Segmentation Algorithm 
 
INPUT: Image, Im, number of clusters, k, replication of k-mean calculation, Rkm 

 
Convert Im to Lab color space 
Create feature array using a and b values for each pixel in the image 
FOR 1 to Rkm 
 Randomly initialize k centroids, c1, c2…ck 
 UNTIL there are no changes in the centroids 
   Group each element in the feature array to the closest centroid 
  FOR 1 to k 
   Recalculate centroids based on all group members 
 Calculated total distance between all elements and their group centroids 
Find and use iteration which had minimum total distance 
 
// Hue based labeling  
Convert Im to HSV color space 
FOR 1 to k 
 Calculate mean H value for region 
Sort the mean H values and label in order (1 to 3) 
IF k >3 
 Assign fourth ranked– 4 
 
//Second pass labeling 
Create binary image using pixels labeled 1 
FOR each row and each column in the image 
 IF pixel is not background 
  Find the neighboring pixels 
  IF no labeled neighbors 
   Assign pixel a new label 

ELSE Assign pixel lowest label of neighbors and store equivalence 
 Resolve equivalence classes 
      FOR each row and column in the image 

IF pixel is not background 
  Re-label pixel based on equivalence (1 to r)   

FOR I to r  
 Calculate the mode a value (from Lab color space) for region 
 Calculate the area of region 

IF mode of a < 0.65 and region > 5 pixels 
 Assign tissue type label 5    
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Figure 4-7:  An example of the automated classification result for two different 
adenocarcinoma cases.  Of particular interest is the ability of the classifier to achieve 
consistent classification result despite significant variations in the intensity of the 
immunohistochemical stain between datasets.  A limitation of the automated approach is 
the exclusion of normal and necrotic tissue classes as there was insufficient distinction of 
these tissue types in the immunohistochemical staining.   
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Figure 4-8:  Some examples of the test sample images used for validation purposes.  
Two manual observers manually traced regions of the different tissue types.  These 
results were compared to the output of the automated classification approach.  



www.manaraa.com

  76   
  

 

 

Table 4-2: A confusion matrix showing the percentage of pixels classified into each 
tissue type class by the two observers.  The shaded cells show the agreement between 
the two observers. The accuracy was calculated by summing the percentage agreed upon, 
which was 73% between the two manual tracing results. 
 

  Manual Tracing (observer 1) 
  Tumor 

(solid) 
Active 

Fibrosis 
Inactive 
Fibrosis Blood Back-

ground Necrosis Normal 

Tumor 
(solid) 17.7 % 1.6 % 0.8 % 0 % 0 % 0 % 0 % 

Active 
Fibrosis 2.8 % 28.4 % 7 % 0 % 0 % 0 % 0.1 % 

Inactive 
Fibrosis 0.5 % 10.7 % 24.5 % 0.2 % 0.2 % 0 % 0 % 

Blood 0.1 % 0.2 % 0.2 % 1 % 0 % 0 % 0 % 

Back-
ground 0.9 % 0.1 % 0 % 0 % 0 % 0 % 0.1 % 

Necrosis 0.3 % 0 % 0 % 0 % 0 % 0.1 % 0 % 

M
an

ua
l T

ra
ci

ng
 (o

bs
er

ve
r 2

) 

Normal 0 % 0.7 % 0.2 % 0 % 0.2 % 0 % 1.3 % 
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Table 4-3: Confusion matrices comparing the percentage of pixels classified into 
each tissue type class by the automated segmentation approach and the respective 
observer.  The shaded cells show the agreement between the automated segmentation 
and the observer. The accuracy for the automated segmentation compared to observer 1 
was 72%, while the accuracy for the automated segmentation compared to observer 2 was 
69%.  
 

  Manual Tracing (observer 1) 
  Tumor 

(solid) 
Active 

Fibrosis 
Inactive 
Fibrosis Blood Back-

ground Necrosis Normal 

Tumor 
(solid) 18.3 % 3.5 % 0.7 % 0.2 % 0.1 % 0 % 0 % 

Active 
Fibrosis 3.6 % 33 % 11.7 % 0.2 % 0.3 % 0.1 % 0.8 % 

Inactive 
Fibrosis 0.3 % 5.2 % 20.2 % 0.1 % 0 % 0 % 0.7 % 

Blood 0 % 0 % 0.1 % 0.7 % 0 % 0 % 0 % 

Back-
ground 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Necrosis 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

A
ut

om
at

ed
 S

eg
m

en
ta

tio
n 

Normal 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

 
 

  Manual Tracing (observer 2) 
  Tumor 

(solid) 
Active 

Fibrosis 
Inactive 
Fibrosis Blood Back-

ground Necrosis Normal 

Tumor 
(solid) 17.1 % 4.1 % 0.4 % 0.2 % 0.7 % 0.2 % 0.2 % 

Active 
Fibrosis 2.8 % 30 % 14.6 % 0.4 % 0.3 % 0.2 % 1.5 % 

Inactive 
Fibrosis 0.3 % 4.2 % 21 % 0.1 % 0.2 % 0 % 0.7 % 

Blood 0 % 0 % 0.1 % 0.7 % 0 % 0 % 0 % 

Back-
ground 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Necrosis 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

A
ut

om
at

ed
 S

eg
m

en
ta

tio
n 

Normal 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Figure 4-9: Sensitivity and specificity graphs.  These graphs compare the 
segmentations of each tissue class between the two observers, observer 1 and the 
automated result and observer 2 and the automated result. The average and standard error 
of the performance across all test image sets is shown. 
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CHAPTER 5  

REGISTRATION PIPELINE 

In previous studies, a significant barrier to the registration of histological data to 

non-destructive data has been the lack of reliable spatial correspondence between the 

datasets.  However, the development of the large-scale image microscope array (LIMA) 

system served to bridge this information gap for this study.  Figure 5-1 provides a 

summary of the registration pipeline developed to bring the multimodal lung nodule 

datasets to a common alignment.  This pipeline incorporates three registration 

approaches; two-dimensional (2D) rigid registration, 2D non-rigid registration and three 

dimensional (3D) rigid registration. 

 

5.1 Registration of the Micro-CT Data 

The lung nodule tissue properties were not altered between the acquisition of the 

micro-CT data and the LIMA imaging and so a non-rigid registration was deemed 

unnecessary to correct the misalignment between the datasets.  A rigid, similarity 

transform, incorporating translation, rotation and scaling was selected as appropriate for 

the LIMA and micro-CT registration [86].   

Each slice of the LIMA dataset was acquired from the cut tissue block so that a 

large depth of field was incorporated into the image. Comparing an airway representation 

in both datasets, Figure 5-2, reveals the difference the incorporation of this depth of field 

makes on the resulting image set.  This difference in image content can have a negative 

impact on intensity based registration metrics.     
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A three dimensional rigid registration approach, incorporating a normalized 

mutual information metric was explored for the registration of the micro-CT and LIMA 

datasets (see equation 5-10 below).  Pre-processing was used to gain a rough alignment 

between the datasets and to transform the LIMA dataset to grayscale.  While it was 

possible to achieve a visually acceptable registration result for some of the nodule 

datasets using this method, the registration of datasets which featured numerous or 

prominent airway structures failed.  As it was desired to have a consistent registration 

approach that could be used to reliably align all nodule cases, a landmark based approach 

was chosen over the normalized mutual information approach. 

Corresponding micro-CT and LIMA image slices were determined though the 

identification of the best matching micro-CT slice for the first LIMA image. This was 

guided by the amount of tissue grossed from the LIMA prior to beginning image 

acquisition.  Subsequent micro-CT slices were determined based on z-axis depth, in 

microns, from this starting position.  The nodule stabilization system, described as a 

portion of the data acquisition pipeline, prevented any motion in the z-plane, hence the 

rigid registration transform could be calculated in 2D and applied to all image slices to 

produce alignment between the three dimensional datasets.   

The 2D rigid registration algorithm, summarized in Figure 5-3, consisted of a 

similarity transform in which the registration landmark points were used to solve for the 

transform parameters by minimizing the distance between corresponding moving and 

fixed landmarks. The similarity transform fS, consists of a translation vector, t, rotation 

matrix, A, and scale matrix λ.  

tAxxf S += !)(         5-1 
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The parameters of the similarity transform were found using the two 

corresponding registration landmark sets, Lrm and Lrf so that the distance measure D(fs) 

was minimized, where; 

!!
==

"+="=
n

i

i
f

i
m

n

i

i
f

i
mSS LrtALrLrLrffD

1

2

1

2
)()( #    5-2 

 Landmark points were used to calculate the transform as the large difference in 

image content in the micro-CT and LIMA datasets deemed them unsuitable for other 

intensity based approaches.  Four corresponding registration landmark points, Lr, and two 

corresponding evaluation landmark points, Le, were manually selected in the LIMA and 

micro-CT datasets for each nodule case. These points were saved in a registration 

landmark file and an evaluation landmark file and input to the registration algorithm 

along with the moving image set.   

The output from the registration algorithm included the aligned moving dataset 

and the transform parameters applied.  In addition, the fiducial registration error (FRE) 

and the target registration error (TRE) were output from the algorithm for validation 

purposes.  The FRE directly equates to the distance measure D(fs) that was being 

minimized to solve for the transform, using the registration landmark set.   
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The TRE was also calculated as a distance measure between fixed landmarks and 

transformed, moving landmarks. However, the TRE was based on the evaluation 

landmark set, Lem and Lef, which was not used to determine the registration parameters 

and hence reflects how well the determined transform parameters map other points in the 

image to their corresponding fixed target points.   
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In the ideal case where the determined transform exactly translated the provided 

moving image to the specified fixed image, the FRE and TRE values would be zero.   

For the registration of the LIMA and micro-CT data the average and standard 

deviation of the FRE was 2.83 ± 0.84 pixels and the TRE was 3.63 ± 2.95 pixels for the 

SkyScan micro-CT datasets.  In the global coordinate system this equated to a physical 

FRE distance of 51.01 ± 15.09 micron and a TRE of 65.4 ± 53.15 micron.  For the micro-

CT data generated from the MicroCAT II system the FRE was 1.59 ± 0.69 pixels and the 

TRE was 3.10 ± 1.40 pixels. In the global coordinate system this equated to a physical 

FRE distance of 44.57 ± 19.22 microns and a TRE of 86.83 ± 39.23 microns.   

 

5.2 Registration of Histological Data 

Due to the extensive processing involved with the creation of histology slides, a 

loss of structural integrity of the tissue sample occurs.  Bending, shearing and tearing of 

the tissue is common as the tissue slice is transferred to the slide. This is especially so in 

the case of the preparation of lung tissue due to the very fragile nature of the alveolar 

walls.  Thus, rigid registration alone would not result in the accurate alignment of the 

histopathology data to the LIMA images.   

As with the micro-CT registration case, there exists a significant difference in the 

image content from the LIMA section and the histology data.  Also, the process of 

histopathology slide creation can result in incomplete tissue sections with portions of the 

tissue missing from the slide.  These factors together resulted in a landmark registration 
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approach being selected for the registration of the histopathology data to the global 

coordinate system. 

A landmark based thin-plate spline algorithm was developed to non-rigidly 

register each histopathology, moving, image to its corresponding LIMA, fixed, image.  

Figure 5-4 summarizes the 2D thin plate spline registration approach. The algorithm was 

based on the mathematics originally presented by Bookstein [87], in which a spline, fTPS, 

is found which interpolates the moving landmarks, Lrm to the fixed landmarks, Lrf,  In 

thin plate spline registration the smallest possible smooth deformation is found by 

minimized bending energy, that permits the landmarks to be exactly mapped to each 

other.  

( )!
"

"+=
n

i

i
miTPS LrxUwDxxf

1
)(       5-5 

where ( ) 22 log rrrU = , D is a matrix representing the affine transformation, wi is 

the warping coefficient matrix which represents the non-affine deformation.  

The bending energy function, E, is minimized to control the extent of warping to 

the smallest deformation possible: 
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The correspondence between the LIMA and histology images was inherently 

gained through the acquisition technique.  For each LIMA and histology pair registration 

landmarks, Lr, and evaluation landmarks, Le, were manually selected and saved to text 

files.  The number of landmarks chosen was dependent on the size of the histology slide 

and the number of reliable landmark structures available, with the average and number of 

landmarks being 36 ± 6. The landmark text files, the fixed base image and the moving 
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images were applied as inputs to the two dimensional thin plate spline registration 

algorithm.  Multiple moving histological images could be input to the algorithm and have 

the same spline deformation applied.  This was required in the case of registering the 

tissue type maps to the global coordinate system. 

The output from the registration approach included the transformed 

histopathology image.  The deformation field, which represented the applied spline, was 

also output, and example is shown in Figure 5-5.  For evaluation purposes, the TRE was 

also calculated and output.  The nature of the spline calculation is to force the moving 

registration landmarks Lrm to the exact position of the fixed registration landmarks, Lrf.  

Hence the FRE is always equal to zero for this approach. 
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The TRE utilizes evaluation landmarks which are not used to calculate the spline 

warping and hence reflects how closely the deformation field matches target points in the 

translated moving image to the corresponding positions in the fixed image space.   
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The average and standard deviation of the TRE for the landmark based thin plate 

spline warping of the histology image set to the LIMA base set was 5.04 ± 2.20 pixels 

which translated to 43.08 ± 18.83 microns in global space.   

 

5.3 Registration of Ex Vivo MDCT Data 

Registration of the ex vivo MDCT data to the global coordinate space was 

achieved using the volume dataset.  A rigid registration algorithm was deemed 
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appropriate for the registration of the isolated lung nodule MDCT and the fixed lobe 

MDCT data to the micro-CT dataset as the tissue properties were not altered between 

imaging.  The rigid registration transform, fR, involved translation, t and rotation, A: 

tAxxf R +=)(         5-9 

A Quasi-Newton optimizer was used to step the transformation towards a 

minimum solution.  As a significant difference in resolution was present between the 

micro-CT dataset and the MDCT dataset, a multi-resolution optimization was included.  

This involved re-sampling the data to four levels; (8,8,3), (4,4,2), (2,2,1) and (1,1,1).  The 

registration transform was found, first using the lower resolution data then that result was 

used as the initial setting for the next resolution level, and so on.  Incorporating the multi-

resolution approach into the optimization decreased the computation time while 

increasing the robustness of the registration approach.   

The normalized mutual information (NMI) metric, has been found to be more 

robust than the standard mutual information metric [88].  This metric does not rely on the 

direct correspondence between graylevel values in the dataset but rather compared the 

overlap in information.  The NMI of images A and B is calculated from the sum of the 

marginal entropies of A and B, divided by the joint entropy: 
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The entropy is based on the probability distribution of the gray values which are 

found from the histogram of the image. 
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Validation of this registration approach was performed by repeating the 

registration process three times and calculating the standard error between the resulting 

transformation parameters.  For the registration of the isolated lung nodule to the micro-

CT dataset the standard errors for resulting translations in x, y and z were 0.9 microns, 

4.5 microns and 5.4 microns respectively.  The standard error for rotation was 6.3 

microns.   For the registration of the fixed lung lobe to the micro-CT data the standard 

errors in translation were 2.0 micron in x, 6.3 microns in y and 2.0 microns in z.  For 

rotation the standard error was 2.2 microns which are all sub-pixel registration errors. 

Qualitative validation was also performed using checkerboard and fused image 

sets of the fixed and moving datasets following registration.  These datasets allowed the 

visualization of the matching between structural points of reference such as tumor 

boundaries and airways.  The checkerboard image shows alternating squares from each 

dataset while the fused image shows a colormap of the overlap between the dataset. An 

example of the checkerboard and fused images for the registered isolated nodule MDCT 

with the micro-CT dataset is shown in Figure 5-7, and the fixed lobe MDCT with the 

micro-CT is shown in Figure 5-8. 

 

5.4 Registration of  In Vivo MDCT Data 

The in vivo MDCT datasets were acquired pre-surgically for clinical purposes and 

added to the study once a patient was consented.  Unfortunately, the quality and 

consistency of the scanning protocol across the nodule cases, was less than ideal.  As a 

part of this study patients were asked to participate in a high resolution, pre-surgical 

perfusion MDCT – but all refused.  As different voltage, current, reconstruction kernels 
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and slice thicknesses were used, this dataset was deemed inappropriate for the 

comparison of Hounsfield Unit variance to histopathological tissue type.  Hence, the in 

vivo MDCT dataset was aligned to the global coordinate system using the 3D rigid 

registration approach.  Although it could not be assumed that the tissue properties had not 

been altered between this data acquisition and the fixed tissue acquisition, the limited 

resolution of theses datasets deemed more sophisticated registration approaches 

unnecessary. 

Manual alignment between the in vivo MDCT and the fixed lobe MDCT was first 

achieved using the large airways and vessels in the lobe as structural landmarks. Once a 

rough alignment was achieved the 3D rigid registration approach was applied, as 

described above.   

Once again the error in the misalignment of the in vivo MDCT data to the global 

coordinate system was evaluated by repeating the registration three times and calculating 

the standard error in the resulting transformations.  The calculated standard errors for 

resulting translations in x, y and z were 1.0 mm, 0.6 mm and 3 mm respectively.  The 

standard error for rotation was 1.2 mm.  As one would expect the standard errors reflect 

the difficulty in registering such sparse data.  The overall tendency across the datasets, for 

the large slice separation to be in the global z-axis is reflected by the large standard error 

in the z translation.   

 

5.5 Results 

The developed registration pipeline was applied to register all the nodule datasets 

to a common coordinate system.  The pipeline was developed to be flexible in 
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accommodating different types of lung cancer with varying structural features, such as 

the large airways found in many squamous cell carcinomas. Through this registration 

subsequent analysis could be conducted relating the tissue classes, as defined from the 

histopathological data, to the registered MDCT dataset on a pixel by pixel basis.  

Example 2D slices from the registered datasets are shown in Figure 5-10 to Figure 5-15. 

The data can also be viewed as a set of registered volumes as shown in Figure 5-16. 
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Figure 5-1: Summary diagram showing the registration approaches applied to map 
the multimodal image datasets to a common global image space.  The red arrows 
indicate the moving image input while the black arrows show the fixed image input. 
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Figure 5-2: Comparing the image content of the LIMA and micro-CT datasets.  A 
large difference in image content in the LIMA (A) and micro-CT (B) dataset, shown post 
registration such that the images are aligned.  Due to the nature of image acquisition for 
the LIMA, capturing the tissue surface of the cut tissue block, a large depth of field is 
present which significantly alters the appearance of airway structures compared to the 
micro-CT representation.  
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Figure 5-3: Diagram of the inputs and outputs of the two dimensional rigid 
registration approach used for registering the micro-CT dataset to the global 
coordinate system.  The minimum distance metric is used to evaluate the parameters of 
the similarity transform based on the input registration landmarks.  A linear interpolator 
maps the pixels from the input image to their transformed position and this transformed 
image in output from the algorithm.  The target registration error (TRE) and fiducial 
registration errors (FRE) are also output for evaluation purposes.   
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Figure 5-4: The two dimensional thin plate spline, non-rigid registration approach 
used to register the histopathology data to the global coordinate system.  This 
approach took the moving and fixed images as well as the registration and evaluation 
landmark files as input.  The registration landmarks were used to calculate the spline 
transform while minimizing the bending energy.  A linear interpolator was used to map 
the moving image pixels to the transformed position.  The resulting transformed image, 
the spline deformation field and the target registration error (TRE) were provided as 
outputs from the algorithm. 
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Figure 5-5: An example of the 2D thin plate spline, non-rigid registration approach. 
This figure shows the original histopathology image, the calculated deformation field and 
the resulting transformed histopathology image in alignment with the LIMA dataset. 
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Figure 5-6: The three dimensional rigid registration approach used to register the 
MDCT data to the global coordinate system.  This approach took the moving and fixed 
volumes as inputs.  The normalized mutual information (NMI) metric was used to 
evaluate the registration.  A lanczos interpolator was used to map the moving image 
pixels to the transformed position in 3D space.  The resulting transformed volume, the 
parameters of the transform and the evaluation images were produced as output. 
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Figure 5-7: Qualitative validation of the 3D rigid registration approach was 
achieved through the use of fused and checkerboard image sets.  The fused data (A) 
shows a colormap of the overlap between the registered isolated nodule MDCT and the 
micro-CT dataset.  The checkerboard images show alternating squares from the two 
datasets in the axial (B), sagittal (C) and coronal (D) view. 
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Figure 5-8:  The evaluation of the fixed lobe MDCT registration to the micro-CT.  
The alignment between the nodule boundaries and internal structures in the registered 
fixed lobe MDCT and the micro-CT dataset can be viewed in the fused data (A) and the 
axial (B), sagittal (C) and coronal (D) checkerboard images. 
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Figure 5-9: Registered adenocarcinoma case 1.  A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions. 
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Figure 5-10: Registered adenocarcinoma case 2. A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions.
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Figure 5-11: Registered adenocarcinoma case 3. A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions.
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Figure 5-12: Registered adenocarcinoma case 4. A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions.
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Figure 5-13: Registered adenocarcinoma case 5.  A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions. 
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Figure 5-14: Registered squamous cell carcinoma.  A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions. 
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Figure 5-15: Registered neuroendocrine carcinoma.  A 2D slice from the volumetric, 
registered, multi-modal dataset with a tabulated account of the resolutions. 
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Figure 5-16:  A volumetric depiction of the registered adenocarcinoma case 4.  This 
figure illustrates the in vivo MDCT (A), fixed lobe MDCT (B), isolated nodule MDCT 
(C), micro-CT (D), LIMA (E), histology (F) and tissue type map (G).  
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CHAPTER 6  

ANALYSIS OF THE MULTIMODAL DATASETS 

6.1 Lung Nodule Architecture 

The segmentation of the histopathological data, generating tissue type maps for 

each dataset, allowed the quantitative evaluation of the composition of the nodule.  

6.1.1 Proportion of Each Tissue Type 

The proportions of each tissue type were calculated by summing the number of 

pixels in a tissue type class and dividing this number by the sum of pixels in all tissue 

type classes.  An average of eleven histopathological sections per nodule were analyzed.  

Figure 6-1 features these results, tabulated and presented in a percentage bar graph.  A 

wide range of distributions of tissue type percentages occurred across the dataset.  The 

solid cancerous tumor portion for the adenocarcinoma cases ranged from 33% to 56%.  

The neuroendocrine carcinoma contained the highest proportion of solid cancerous tumor 

at 76%.  The BAC component of the nodules ranged from 58% to 0% in the 

adenocarcinoma cases.  The two adenocarcinoma cases with the highest total cancer 

proportion (solid plus BAC) also had the two smallest proportions of active fibrosis.  

6.1.2 Three Dimensional Tumor Renderings 

The histopathologically obtained tissue type maps were also used to generate 3D 

reconstructions of the tissue types with in a nodule, Figure 6-2.  The creation of 3D 

reconstructions from histopathology data is challenging due to the distortion of the tissue 

which occurs during the creation of a histology slide.  The developed process and 

registration models allow for the correction of this distortion and the alignment of 
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sequential histological sections in a global coordinate space.  Hence volumetric 

histopathological datasets were created for each nodule. 

Within the histopathological data, an anisotropy existed between the in-plane 

resolution (8.54 micron) and the separation between subsequent sections (approximately 

504 microns).  Lanczos resampling was used to decrease the in-plane resolution and 

cubic interpolation was used to bridge the information between subsequent sections.  A 

3D surface for each tissue type was then generated via smoothed triangular 

approximation.  The 3D tissue type reconstructions are valuable in visualizing the 

distribution of the tissue types throughout the nodule volume.  These reconstructions 

contribute towards gaining a comprehensive understanding of the nodules volumetric 

content and the relationships between tissue boundaries. 

6.1.3 Regional Based Analysis 

The construction of tissue type maps based on histopathology can not only be 

used to gain comprehensive estimates of tissue type proportions and 3D component based 

reconstructions, but may also be used for quantification of the regional properties of each 

tissue type.  

The histological tissue type maps were split into a series of binary masks, one for 

each tissue type.  Connected component analysis was conducted to label each region of 

each tissue type.  For each region, a number of shape descriptors were calculated and 

these values were tabulated for analysis.  Shape descriptors are widely used to simplify 

the description of complex objects.  This is achieved by assigning a numerical value to 

represent a property of the object’s shape.  Area and perimeter are examples of simple 

shape descriptors.   
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Across the adenocarcinoma cases, the solid cancerous tumor and active fibrosis 

tissue types had the highest number of regions, 2299 and 2260 respectively.  The average 

size of these regions however, was quite different with the solid cancerous tumor having 

a mean region size of 1.7 mm2 while the active fibrosis had a mean region size of 0.17 

mm2.  The number of regions for necrosis, inactive fibrosis, cancerous tumor (BAC) and 

red blood cells were 509, 448, 216 and 193 respectively.  Figure 6-3 shows the average 

areas of the tissue type regions. 

The Euler number is a shape descriptor which is indicative of the number of holes 

with in a region.  It is calculated by subtracting the number of holes in a region from the 

number of connected components [89].  For understanding the architecture of lung 

nodules, trends in the Euler number can be insightful for determining which tissue types 

are generally encompassing and which are encompassed. A structure that is 

encompassing of other regions would have a high number of holes and hence a very 

negative Euler number.  Structures that exist primarily as ‘islands’ in an encompassing 

‘ocean’ would have a Euler number of zero or above.   

A plot of the average range of Euler numbers for each tissue type, across all 

datasets is shown in Figure 6-4.  The plot clearly shows that the inactive fibrosis tissue 

type is the most encompassing and that necrotic and blood regions exist exclusively as 

islands (as seen by the global minimum Euler number).  Solid cancerous tumor also 

presents as being more encompassing overall than active fibrosis and non-solid, BAC 

cancerous tumor. 

Area to perimeter ratios have been commonly used to describe the boundary of an 

object.  Compactness is a shape measure which represents the spread of a region and it is 
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calculated as the area times 4π divided by the squared perimeter [90].  A circular object 

has the maximum compactness value of one.  Shapes with more complex boundaries 

have a compactness value less than one.  An infinitely long and narrow shape would have 

a compactness value of zero. Figure 6-5 shows the average compactness for each tissue 

type across all the nodule datasets.  From this data, necrosis and blood regions have the 

simplest, most compact boundaries with average compactness values of 0.68 and 0.81 

respectively.  On average the inactive fibrosis regions have been found to contain the 

most complex boundaries, having the lowest overall compactness value at 0.45.  

Cancerous regions (both solid and BAC) and active fibrosis had comparable compactness 

values of 0.55, 0.49 and 0.53 respectively.  

6.1.4 Regional Analysis Conclusions 

As described, the lung cancer nodule represents a complex biomass.  The static 

organization of histopathological tissue types with in the biomass is potentially 

informative for cancer biology.   

Shape descriptor features were used to evaluate the regional structure of the 

nodules.  Looking at the number and size of regions across the tissue types it was found 

that the active fibrosis regions were small but numerous.  The inactive fibrosis regions 

were on average of a similar size to the solid cancerous regions, however, many more 

cancerous regions were present throughout the nodule volumes.  BAC cancerous tumor 

had the largest regional areas of all tissue types. 

Using the Euler number, inactive fibrosis was found to be the most encompassing 

tissue type.  Solid cancerous tumor also had a large range of Euler numbers with the 

second lowest global minimum.  One possible explanation for this is that the fibrosis is in 
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response to cancer regions, with the fibrosis replacing cancer as the tumor biomass 

develops.  The small range and zero global minimum of the Euler numbers of necrotic 

regions indicated this tissue type does not encompass other tissue type regions.  This may 

be indicative of the mechanism causing necrosis to occur.  Were necrosis regions formed 

by the cell death of only cancerous tissue, we would expect the Euler numbers for 

necrosis to vary in the same extent as for solid cancerous regions.  However, the near 

zero, very small range of Euler numbers for necrosis indicate that necrotic regions likely 

occur from a lack of sufficient blood supply to an area of the nodule, resulting in the cell 

death of all tissue types in that vicinity.  As would be expected, groups of red blood cells 

were strongly presented as encompassed island regions.  This is indicative of the blood 

being contained within vessel walls and separate from other tissue types.  

Regions of red blood cells were also found to have the most compact boundaries 

out of the tissue types.  Again, this is intuitive given the containment in relatively 

cylindrical blood vessels.  The relatively high average compactness and small standard 

error found for necrotic regions suggests that necrosis is a singular event that occurs with 

a nutrient deficit from perhaps a single critical blood vessel. 

The inactive fibrosis tissue type had the lowest average compactness value which 

may be related to the Euler number findings for this tissue type.  The BAC cancerous 

tumor regions also had relatively low compactness values which are a reflection of the 

boundary of these regions following a complex alveolar structure.  The solid cancerous 

regions had a compactness value close to the midpoint (0.5) which is likely to represent 

the random non-directed expansion of cancer cells, some being very complex and others 

being compact.   
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6.2 Investigation of Nodule Representation in MDCT 

6.2.1 Hounsfield Unit Correlations to Tissue Types 

Having described and evaluated the histopathological heterogeneity in tissue 

types within lung nodules, it was possible to relate this information to the MDCT 

representations.  MDCT data also reveals heterogeneity within lung nodules, in the 

graylevel, or Hounsfield Unit (HU), Figure 6-6, however it is not known if a correlation 

exists between the two. 

Following the registration of the histopathological tissue type maps and the 

radiological datasets to the common coordinate system, a direct correspondence was 

established between the voxels in the radiological data and the tissue type labels.  This 

labeling was used to extract out the HU values corresponding to each tissue type and 

statistically evaluate if a significant difference could be found.  

The tissue type map was split into a series of binary masks, one for each tissue 

type.  Each binary mask was resampled, using Lanczos resampling, to match the 

resolution of the micro-CT, the isolated nodule MDCT dataset and the fixed lobe MDCT 

dataset.  As the in vivo MDCT datasets were acquired using different scanning protocols, 

on different MDCT systems and reconstructed with low resolution using differing 

reconstruction kernels, this data could not be incorporated.   

The binary masks were used to isolate pixels specific to a tissue type, from the 

radiological data.  HU histograms were found for each tissue type and the histogram 

statistics were collected, including mean, median, standard deviation, skewness and 
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kurtosis.  Ninety values were tabulated for each histological section (6 histopathological 

tissue types for 3 imaging modalities providing 5 histogram statistics), Figure 6-7.  

Only the adenocarcinoma cases were evaluated for statistical separation in HU 

values based on histopathological tissue type.  As only one complete dataset for 

squamous cell and one for neuroendocrine carcinoma were obtained, the datasets were 

not large enough to calculate the variance for these cancer types.  

Linear mixed model analysis was used to compare the mean histogram parameters 

among the histological tissue types. This was followed by Tukey’s test for pairwise 

comparison of means between tissue types. This analysis was performed separately for 

each of the imaging methods (micro-CT, isolated nodule MDCT, and fixed lobe MDCT). 

Figure 6-8 to Figure 6-12 contain the tabulated and graphed statistical results showing 

the mean and standard error for each parameter analyzed and p-values from Tukey’s test. 

From this analysis, it was found that the HU heterogeneity in the MDCT data of 

lung nodules is informative for at least some tissue types.  The mean HU measure 

provided the greatest ability to separate the histopathological tissue classes in the MDCT 

data of the isolated nodule, Figure 6-8.  Statistically significant separability (p < 0.0001 

to p = 0.044) was found between the BAC cancerous tumor (-376.2 HU), red blood cells 

(-74.7 HU), solid cancerous tissue (-10.9 HU) and inactive fibrosis (25.9 HU) classes.  

Active fibrosis and necrotic tissue regions could not be distinguished from the solid 

cancerous tumor using the mean HU from the isolated nodule dataset which were -17.5 

HU, -3.4 HU and -10.9 HU respectively.   

The BAC cancerous tumor was easily identified as different from the other solid 

nodule tissue types, due to the non-solid alveolar structural arrangement of the cancer 
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cells.  A very high statistical difference in the mean, median, standard deviation, 

skewness and kurtosis of the HU values, in the micro-CT, isolated nodule MDCT and 

fixed lobe MDCT of the BAC tumor was found when compared to the other tissue types 

(p < 0.0001).   

Blood could be separated from solid cancerous tissue using the mean HU in all 

image sets, median HU in the isolated nodule MDCT, HU standard deviation in the 

isolated nodule MDCT and fixed lobe MDCT, the HU skewness in the isolated nodule 

dataset and the kurtosis of the fixed lobe MDCT.   

Inactive fibrosis could be separated from solid cancerous tissue using the HU 

standard deviation in all image sets and the HU kurtosis of the micro-CT.  Active fibrosis 

and necrosis were the least separable from solid cancerous tumor.  Active fibrosis was 

only significantly different form solid cancerous tissue in the HU kurtosis of the fixed 

lobe MDCT.  Necrosis was not significantly different from solid cancerous tissue in any 

of the datasets.  

The micro-CT dataset contained the greatest standard error in the HU due to a 

higher degree of noise within the dataset.  This is due to the higher resolution of the 

micro-CT and also the absence of the same corrections built in with the Siemens 

Somatom Sensation 64 MDCT system, on which the isolated nodule and fixed lobe 

MDCT data was acquired.  The raw micro-CT data was converted to HU using an air and 

water phantom to determine the linear correction of grayscale values.  While phantoms 

are also used to calibrate the Siemens Somatom Sensation 64 MDCT system, we are not 

in control of how this is achieved.   This resulted in different HU calibrations between the 

micro-CT and the MDCT image sets. 
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To our knowledge, this is the first work which presents a direct, statistically 

significant correlation between MDCT heterogeneity and histological tissue type.   
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Tissue Type 
Proportions 

Adenocarcinoma 
 

Neuro-
endocrine 

Squamous 
Cell 

 Case 1 Case 2 Case 3 Case 4 Case 5   
Cancer (solid) 36 % 33 % 49 % 55 % 56 % 76 % 61 % 
Cancer (BAC) 58 % 12 % 1 % 0 % 38 % 0 % 0 % 
Red Blood Cells 0 % 1 % 17 % 0 % 0 % 0 % 0 % 
Necrosis 3 % 6 % 0 % 6 % 0 % 2 % 3 % 
Active Fibrosis 2 % 11 % 31 % 20 % 0 % 22 % 11 % 
Inactive Fibrosis 1 % 37 % 2 % 19 % 6 % 0 % 25 % 
 
 
Figure 6-1:  Comparison of tissue type proportions.  The proportions of each tissue 
type for the five adenocarcinoma cases and example neuroendocrine and squamous cell 
carcinomas were determined using the 3D histopathology datasets. 
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Figure 6-2:  The 3D reconstruction of the tissue types with in an adenocarcinoma 
case.  This reconstruction in 3D allows for a more comprehensive understanding of the 
relationships between the different tissue types and their distribution throughout the 
nodule volume. 



www.manaraa.com

  116   
  

 

 

Average Region Area

0

5

10

15

20

25

30

35

40

45

Cancerous
Tumor (solid)

Active Fibrosis Necrosis Inactive
Fibrosis

Cancerous
Tumor (BAC)

Red Blood
Cells

A
re

a 
(m

m
2 )

 
 
Figure 6-3: The average region areas across the tissue types.  This plot shows the 
average area of the regions for each tissue type (with standard deviation).  Regions of red 
blood cells, necrosis and active fibrosis are the smallest while BAC cancerous regions 
have the largest region areas. 
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Figure 6-4:  Euler number trends across the different tissue types.  This plot shows 
the average range of Euler numbers in each tissue type (with standard error bars), across 
all nodule datasets.  Also plotted is the overall global minimum Euler number.  This plot 
reveals the trend that the inactive fibrosis and cancerous tumor tissue types tend to be 
encompassing while the other tissue types tend to be encompassed. 
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Figure 6-5: Compactness trends across different tissue types.  This plot shows the 
average compactness values for each tissue type (with standard error bars), across all the 
nodule datasets.  The red blood cells and necrosis regions have the most compact 
boundaries while the inactive fibrosis regions are the least complex.  
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Figure 6-6:  An example of the grayscale Hounsfield Unit (HU) heterogeneity in in 
vivo MDCT data of lung nodules.  The grayscale heterogeneity is shown using different 
window and leveling; lung (window width, 1500 HU, window level, -500 HU) and 
mediastinal (window width, 300 HU, window level, 50 HU).  The colormap highlights 
the difference between the graylevels (red, 350 HU to blue, -250 HU). 
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Figure 6-7:  Summary diagram for the collection of the 90 histogram statistical 
measures for each histological section.  This involves separating the histopathological 
tissue type map into 6 binary images, using them to isolate the tissue type specific 
Hounsfield Unit pixels in 3 CT datasets and collecting 5 histogram statistics from each 
histogram.  
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value from p<0.0001 (BAC vs. 
all other tissue types; Blood vs. 
Inactive Fibrosis) to p=0.034 for 
Cancer (solid) vs. Inactive 
Fibrosis 

* means with the same letter are not significantly different 

 
Figure 6-8: Comparison of the statistically significant separations between the mean 
Hounsfield Unit for each tissue type in the micro-CT, isolated nodule MDCT and 
fixed lobe MDCT data.  
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Figure 6-9:  Comparison of the statistically significant separations between the 
median Hounsfield Unit for each tissue type in the micro-CT, isolated nodule MDCT 
and fixed lobe MDCT data.
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Figure 6-10: Comparison of the statistically significant separations between the 
standard deviation in the Hounsfield Unit histogram  for each tissue type in the 
micro-CT, isolated nodule MDCT and fixed lobe MDCT data. 
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Figure 6-11: Comparison of the statistically significant separations between the skew 
in the Hounsfield Unit for each tissue type in the micro-CT, isolated nodule MDCT 
and fixed lobe MDCT data.  
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Figure 6-12: Comparison of the statistically significant separations between the 
kurtosis in the Hounsfield Unit histogram for each tissue type in the micro-CT, 
isolated nodule MDCT and fixed lobe MDCT data. 
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CHAPTER 7  

CONCLUSION 

7.1 Contributions  

It was the purpose of this research to investigate two important hypotheses related 

to lung nodules: 

The first hypothesis was that lung nodules contain both cancerous and non-

cancerous regions with a three dimensional complex architecture which is not evident 

through traditional histological processing.  The second hypothesis was that the 

histopathologically determined tissue types within a lung nodule is related to the nodule’s 

representation in computed tomography imaging, with a correlation between subtle 

density variations and cancer versus non-cancerous tissue types. 

To recall the specific aims of the research study: 

• Specific Aim 1:  Establish a reliable tissue acquisition, processing and 

multimodal imaging method.   

• Specific Aim 2:  The development of an automated classification approach 

for histopathological data.   

• Specific Aim 3:  The construction of a registration processing pipeline to 

register the multimodal image datasets to a common coordinate system.  

• Specific Aim 4:  The analysis of nodule histopathological tissue type 

properties including the correlation to MDCT graylevel heterogeneity.   

A successful tissue acquisition, processing and multimodal imaging method for 

the acquisition of lung nodule data has been developed and described in Chapter 3.  This 

process incorporates the use of a unique sectioning and imaging system, the LIMA, 
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which maintains the spatial correspondence between non-destructive radiological 

imaging and histopathological processing.  This developed methodology was utilized to 

acquire complete and comprehensive datasets for five adenocarcinoma cases as well as an 

example neuroendocrine and squamous cell carcinoma case (Aim 1). 

A multi-step immunohistochemical staining approach has been identified to 

provide contrast between the tissue types of interest in lung nodules.  Using this 

immunohistochemical staining, an automated segmentation approach was developed 

(Chapter 4).  The k-means clustering approach was capable of generating tissue type 

segmentations in under a minute with comparable accuracy, sensitivity and specificity to 

inter-observer values (Aim 2) 

The issue of establishing a reliable basis for the non-rigid registration of 

histopathological data to non-destructive datasets has been overcome with the LIMA 

system, which served as the basis for the developed registration approach (Chapter 5).  

Hence for the first time, labeled histopathology data could be related, on a pixel to pixel 

basis, to radiological datasets (Aim 3).   

Chapter 6 described the analysis of the histopathological data (Aim 4).  This 

involved the comparison of tissue type proportions across the nodules datasets.  Regional 

shape analysis was also conducted to provide quantitative data for the investigation of the 

lung nodule architecture.  It was demonstrated that the registered histopathological tissue 

type maps could be used to generate volumetric reconstructions for the further 

understanding of the tissue type composition of the lung nodule biomass (first 

hypothesis).  
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Also presented in Chapter 6 was the statistical evaluation of the micro-CT, 

isolated nodule MDCT, and fixed lobe MDCT tissue specific histograms.  Statistical 

evidence was found that a significant correlation does exist between MDCT graylevels 

and histopathologically defined tissue types (second hypothesis).   

 

7.2 Limitations of the Research 

There are a number of pertinent comments with regard to research in human 

subjects, including; the number of suitable cases, obtaining consent for pre-surgical 

MDCT scanning and the time required to acquire and process the data.  This study 

required lobectomy specimens such that imaging and fixation could be achieved in an 

inflated state.  At the projects conception lobectomy procedures were commonly 

performed at the University of Iowa for the removal of lung nodules, however a shift 

towards wedge resections has occurred over recent years.  Currently at the University of 

Iowa a high number of nodules are resected via a wedge resection procedure and a full 

lobectomy is performed only if the surgical pathology diagnosis is positive for cancer.  

This approach is beneficial for patients as the greatest possible amount of lung tissue is 

retained, but it does have a negative affect on patient recruitment for this study.   

The less than ideal quality of the clinically obtained in vivo MDCT data prevented 

the investigation of the statistical separation between tissue types in this dataset.  It was 

known that the slice thickness for the clinical MDCT data would be approximately 3mm.  

What was not expected, however, was the large range in scanning protocols used 

clinically, even within the same institution.   
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IRB approval was sought and received to conduct, high resolution, perfusion 

MDCT scanning of the patient prior to surgery.  Unfortunately, of the suitable patients 

identified for participation in this research study, all have been unwilling or unable to 

undergo an additional pre-surgical, perfusion MDCT scanning procedure.  In a number of 

cases, patients expressed an unwillingness to undergo a PICC line placement as the 

reason for not consenting to pre-surgical imaging.  

This multimodal study is a highly detailed, labor intensive process.  The 

preparation of the tissue and acquisition of the image sets takes over 230 hours to 

complete.  This time estimate is just to obtain the image data and does not include the 

time required for registration or analysis.  When this is coupled with the issue of having 

no control over when cases become available, personal and equipment scheduling 

conflicts can arise and become a further restrictive issue. 

 

7.3 Future Work 

Future directions for the project would be to improve the pre-surgical clinical 

imaging by encouraging thinner slice reconstructions and the use of standardized 

protocols with in a single institution. Perfusion imaging should still be pursued but an 

alternative less invasive option could increase the number of subjects consenting to pre-

surgical imaging.  Dual energy MDCT imaging would be another potential approach for 

investigation. 

We have established that statistically significant correlations exist between CT 

graylevel values and histopathologically determined tissue type.  As a future direction of 

the research, it needs to be determined if this separability of the CT based data is 
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achievable using the histopathologically determined tissue type maps only for validation.  

That is, the development of a classifier which is trained using the segmented CT datasets 

and tested on un-segmented CT data.  It is possible that incorporating texture based 

features as well as graylevel statistics could be highly valuable in this task. 

The future expansion of the study to include other forms of pre-surgical imaging 

such as PET and also possibly MRI would be highly valuable.  PET/CT systems are 

being increasingly incorporated into clinical practice for the evaluation of identified lung 

nodules [91].   Currently a single standard uptake value (SUV) with a cutoff of 2.5 or 

greater, is used to indicate malignancy [92].  However, a broad range of SUV values are 

found in the clinical arena.  Higher SUV values have been associated with a decrease in 

survival for lung cancer patients [93]. Using the designed processed model presented, it 

would be possible to investigate if a correlation exists between SUV values and 

proportion of cancerous to non-cancerous nodule tissue. 

Improvements may be made to the automated histopathology segmentation 

technique so that necrotic and normal airway and vessel wall tissue could be 

distinguished from fibrosis.  This may require adjustments to the staining protocol.  

Alternatively a post-processing step may be added which further classed the image based 

on regional shape features and relationships.   

The designed process model for the creation of multi-modal, volumetric datasets 

has extraordinary potential in exploring the structure of nodules in other organ systems.   

The continued collection of lung nodule cases should also involve the tracking 

and incorporation of patient outcomes over time.  With this, the link between patient 
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outcome and specific tissue type proportions with in the nodule could for the first time be 

quantitatively evaluated.  

These comprehensive nodule datasets are able to provide a more specific ground 

truth to computer aided diagnosis developers, than the currently available ‘malignant’ 

versus ‘benign’ nodule diagnosis. It is the intention to make this dataset accessible to the 

public via future incorporation into the Lung Imaging Database Consortium (LIDC) 

dataset [94].  
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